авторефераты диссертаций БЕСПЛАТНАЯ  БИБЛИОТЕКА

АВТОРЕФЕРАТЫ КАНДИДАТСКИХ, ДОКТОРСКИХ ДИССЕРТАЦИЙ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Влияние энерговыделения на структуру вихревых течений в неравновесном газе

На правах рукописи

ВИННИЧЕНКО Николай Аркадьевич

Влияние энерговыделения на

структуру вихревых течений

в неравновесном газе

Специальность 01.04.17 - химическая физика,

в том числе физика горения и взрыва

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата физико-математических наук

Москва – 2009

Работа выполнена на кафедре молекулярной физики физического факультета Московского Государственного Университета имени М.В.Ломоносова.

Научный руководитель: доктор физико-математических наук, профессор А. В. Уваров.

Официальные оппоненты: доктор физико-математических наук, член-корр. РАН, С.Т. Суржиков, доктор физико-математических наук, А.Е. Луцкий.

Ведущая организация: Объединенный институт высоких температур РАН, г. Москва

Защита состоится " " 2009 г. в " " час.

на заседании диссертационного совета Д 501.002.01 в Московском Государственном Университете имени М.В.Ломоносова по адресу:

119992, ГСП-2, Москва, Ленинские горы, Физический факультет МГУ,

С диссертацией можно ознакомиться в библиотеке физического факультета МГУ.

Автореферат разослан " " 2009 г.

Ученый секретарь диссертационного совета Д 501.002. кандидат физико-математических наук Т.В. Лаптинская 1

Общая характеристика работы

Актуальность темы Интерес исследователей к проблемам течения неравновесного газа, то есть газа, в котором энергия внутренних степеней свободы превышает равновесное значение, связан с большим количеством практических приложений. Неравновесный газ естественным образом существует в верхних слоях атмосферы, и связанное с неравновесностью повышенное энерговыделение на поверхности летательного аппарата при полете на таких высотах предъявляет требования к термоизоляционным свойствам обшивки, которым не всегда удовлетворяют современные материалы (так называемая проблема космического самолета). В неравновесных средах лазеров и разрядов энерговыделение также является негативным эффектом: релаксационный нагрев может приводить к развитию перегревно-ионизационной неустойчивости, контракции и срыву генерации излучения. В ряде работ предпринимались попытки улучшить характеристики проточного лазера за счет дополнительной турбулизации среды, создания вихревых возмущений с помощью препятствия или с помощью звуковых волн. При этом, имеет место и обратное воздействие энерговыделения на структуру течения. В отличие от этих случаев, в которых нагрев нежелателен, в авиации все чаще предлагается специально воздействовать на течение с помощью разряда. Такое воздействие может стать новым средством управления течением вокруг летательного аппарата, что весьма актуально в настоящее время, когда возможности традиционных механических методов в целом исчерпаны. Помимо улучшения аэродинамических характеристик при внешнем обтекании, существует также проблема эффективного поджига горючей смеси внутри двигателя при полетах с большой скоростью и на больших высотах (соответственно, при низких давлениях). И в этом случае решением проблемы может оказаться использование разрядов, обеспечивающих локальный предварительный прогрев смеси и необходимое исходное количество активных радикалов.

Во всех упомянутых приложениях важной частью газодинамических течений являются вихревые структуры. Ими определяются такие важные характеристики течения, как положение точки отрыва потока, эффективная длина вихревого следа за телом, эффективность перемешивания внутри лазеров или камер сгорания, наличие зон возвратного течения и стабилизация пламени в вихревых горелках.

Вихревые структуры привлекали внимание исследователей на протяжении всей истории развития гидродинамики, однако практически все результаты были получены в приближении несжимаемой жидкости. Причин для этого несколько. Во-первых, скорость газа в вихре в принципе не может быть больше (а, как правило, гораздо меньше) скорости звука. С точки зрения классической гидродинамики, в этом случае сжимаемостью газа можно пренебречь. Во-вторых, до появления мощной вычислительной техники и современных численных методов задача о вихре в сжимаемой среде была слишком трудна, поэтому рассматривалось сильно упрощающее ситуацию с математической точки зрения приближение несжимаемой жидкости. Наконец, при расчетах классических гидродинамических течений без заметных тепловых эффектов задач, требующих учета сжимаемости газа в зонах вихревого течения, не возникает. Ситуация резко меняется, когда дело касается физических (главным образом, тепловых) методов воздействия на течение. Так как выделение энергии приводит к переносу массы, при рассмотрении взаимодействия энерговыделения и вихревой структуры необходимо достаточно полно учитывать эффекты сжимаемости.

Настоящая работа посвящена анализу взаимодействия одиночных вихрей и вихревых течений и энерговыделения, вызванного неравновесным состоянием среды. Примером такой среды может служить среда газового разряда. Основным фактором влияния разряда на течение большинство авторов считают именно энерговыделение (быстрое, с мгновенным переходом энергии разряда в тепло, или же медленный переход энергии в поступательные степени свободы через релаксацию колебательных и электронных возбуждений), хотя некоторые работы также обращают внимание на силовые факторы, такие как ионный ветер. В теоретических работах, посвященных взаимодействию вихрей и других течений с разрядом часто используется крайне упрощенная модель, сводящая действие разряда к энерговыделению как функции координат и времени [1, 2, 3]. Такая модель удобна тем, что не требует включения в систему дополнительных уравнений или учета зависимости величины энерговыделения от параметров течения, которая может изменить свойства уравнений газовой динамики. Тем не менее, в реальной неравновесной среде энерговыделение зависит от температуры и плотности, что приводит к дополнительным эффектам, таким как развитие перегревно-ионизационной неустойчивости среды. Рассматривая энерговыделение, зависящее только от координат и времени, можно учесть лишь одну из сторон взаимодействия влияние энерговыделения на течение, но не влияние течения на энерговыделение. Поэтому в настоящей работе влияние неравновесной среды учитывается более полно, с использованием энерговыделения, зависящего от температуры или плотности, либо с помощью дополнительного уравнения релаксации энергии внутренних степеней свободы с учетом мгновенного перехода части энергии в тепло. Взаимодействие одиночных вихрей с энерговыделением, зависящим от параметров течения, рассматривалось в работах [4, 5].



Некоторые результаты этих исследований рассмотрены в настоящей работе, в частности, показано, что использованная в [4] модель среды с энерговыделением, зависящим от плотности, неустойчива относительно малых возмущений. В [5] та же ситуация наблюдается для энерговыделения, зависящего от температуры, при быстром уменьшении времени релаксации с ростом температуры. Кроме того, в [5] используется приближение несжимаемой жидкости, которое недостаточно точно описывает тепловые эффекты. В литературе встречаются и более подробные, нежели использованные в диссертационной работе, модели разряда, с учетом уравнений электродинамики и детальной кинетики.

Часть из них, однако, не учитывает гидродинамических явлений [6], а повышение точности, достигнутое другими [7] за счет усложнения кинетической схемы, как правило, сводится на нет большой погрешностью известных экспериментальных значений скоростей переходов. Применение в настоящей работе промежуточных моделей, без детальной кинетики, но с учетом зависимости энерговыделения от параметров течения и возможности постепенного перехода энергии из внутренних степеней свободы в поступательные, обусловлено ситуацией, сложившейся в вопросе об окончательном состоянии вихрей в неравновесной среде. Несмотря на богатую историю изучения вихревых структур и рост интереса к течениям неравновесных сред, окончательного ответа на вопрос, что происходит с вихревыми структурами в неравновесном газе, до сих пор нет. В работе [1] утверждается, что в результате энерговыделения происходит распад вихря, в [4] получена быстрая диссипация вихря в неравновесной среде, в статье [5] говорится о перестройке вихря в результате взаимодействия. К сожалению, однозначных экспериментальных данных, позволивших бы разрешить разногласия между теоретическими работами, нет. Альтернативой может быть решение этой задачи в наиболее простой и общей формулировке, позволяющей строго ответить на вопрос в фундаментальном плане, не привязываясь к условиям конкретного эксперимента. Построение такого решения является основной целью данной работы.





Цель работы 1. Решение задачи о взаимодействии одиночного вихря с энерговыделением в стационарной неравновесной среде с учетом зависимости величины энерговыделения от параметров течения.

2. Исследование влияния устойчивости неравновесной среды на процесс изменения параметров вихря.

3. Решение задачи об изменении параметров вихря в результате начального возбуждения внутренних степеней свободы молекул для различной геометрии возбуждения.

4. Определение сохраняющихся величин для вихря в неравновесном газе.

5. Численное моделирование влияния энерговыделения на условия образования вихрей дорожки Кармана при обтекании цилиндра потоком неравновесного газа.

6. Исследование возможности применения упрощенных моделей сжимаемой среды при расчете течений неравновесного газа.

Научная новизна работы 1. Сформулирована и решена задача о взаимодействии одиночного вихря с энерговыделением в стационарной неравновесной среде.

Впервые получены аналитические решения, описывающие процесс изменения параметров вихря, для предельных случаев быстрой и медленной релаксации. Показано, что результаты, ранее интерпретировавшиеся как быстрая диссипация вихря в неравновесной среде, обусловлены неустойчивостью среды.

2. Впервые решена задача об изменении параметров вихря в результате начального локального возбуждения внутренних степеней свободы молекул. Исследована динамика вихря в случае неосесимметричного возбуждения, включающая унос массы, постепенное падение спирали нагретого газа на центр вихря и перемешивание, приводящее к окончательному осесимметричному состоянию. Показано, что в случае конечной протяженности зоны энерговыделения вдоль оси вихря возникает вторичное течение, меняющее характеристики вихря. Показана возможность развития неустойчивости Рэлея Тейлора при периодической накачке энергии во внутренние степени свободы.

3. Предложен подход, позволивший найти определенные законы сохранения для вихря в случае, когда часть вещества уносится волной, вызванной энерговыделением. Построен класс интегралов движения в случае осесимметричной эволюции вихря в неравновесном газе. Показано, что полный момент импульса и полная энергия, выражение для которой модифицировано с учетом уноса части массы, сохраняются и в неосесимметричном случае.

4. Впервые решена задача о влиянии неравновесного состояния среды на структуру вихревой дорожки Кармана. Показано, что воздействие на условия образования вихрей в сложном течении заметно эффективнее воздействия на параметры одиночных вихрей.

Исследована возможность применения упрощенных моделей учета сжимаемости для расчетов течений неравновесного газа.

Научная и практическая ценность работы Заключается в подробном анализе различных аспектов взаимодействия отдельных вихревых структур и вихревых течений с неравновесной средой при различных параметрах энерговыделения. Полученные результаты могут быть использованы при проектировании конкретных технических устройств: проточных лазеров, вихревых горелок, устройств плазменного управления течением, на работу которых оказывает влияние взаимодействие вихревых структур и энерговыделения.

Основные положения, выносимые на защиту 1. Результаты численного моделирования и аналитические решения для процесса изменения параметров вихря в стационарной неравновесной среде. Вывод о переходе вихря в новое состояние с измененными характеристиками при условии устойчивости неравновесной среды.

2. Анализ устойчивости неподвижной неравновесной среды для разных моделей энерговыделения, позволивший дать новое объяснение результатам, полученным другими авторами для среды с энерговыделением, зависящим от плотности. Показано, что происходит не быстрое исчезновение вихрей в стационарной неравновесной среде, а развитие неустойчивости, свойственной среде с данным типом энерговыделения, независимо от наличия вихря.

3. Аналитические решения для эволюции вихря в результате начального возбуждения внутренних степеней свободы молекул в предельных случаях быстрой и медленной релаксации.

4. Результаты расчетов динамики вихря для осесимметричного и неосесимметричного локального возбуждения внутренних степеней свободы молекул. Результаты расчетов с учетом конечной протяженности зоны энерговыделения вдоль оси вихря. Вывод об уменьшении плотности и повышении температуры в центральной части вихря и об увеличении угловой скорости в результате выделения энергии. Результаты расчетов развития неустойчивости Рэлея-Тейлора при периодической накачке энергии во внутренние степени свободы молекул в кольцевой области.

5. Метод определения интегралов движения для вихрей в сжимаемой неравновесной среде, учитывающий возможность уноса массы за пределы рассматриваемой области. Ряд интегралов движения для вихря в неравновесной среде, включающий полный момент импульса и полную энергию.

6. Результаты расчетов вихревой дорожки Кармана в неравновесном газе с использованием трех разных моделей среды, отличающихся полнотой учета сжимаемости. Анализ возможности использования упрощенных моделей для расчета течений неравновесного газа.

Апробация работы и публикации Основные результаты диссертационной работы докладывались на:

1. Международном коллоквиуме "Physics of shock waves, combustion, detonation and non-equilibrium processes" (Минск, 2005);

2. Четвертой Всероссийской конференции "Необратимые процессы в природе и технике" (Москва, 2007).

3. XV школе-семинаре "Современные проблемы аэрогидродинамики" (Сочи, 2007).

4. Всероссийском семинаре по аэрогидродинамике (Санкт-Петербург, 2008).

5. Международной конференции "Nonequilibrium processes in combus tion and plasma based technologies" (Минск, 2008).

Кроме того, результаты работы докладывались на конференции "Ломоносов-2004".

По результатам работы опубликованы 3 статьи в реферируемых научных изданиях и тезисы к 6 докладам на всероссийских и международных конференциях.

Объем и структура диссертации Диссертация состоит из введения, четырех глав, заключения и списка литературы. Общий объем 122 страницы, в том числе 34 рисунка. Список литературы содержит 120 наименований.

2 Содержание диссертации Во введении обосновывается актуальность темы, приводится обзор литературы, формулируются цели и задачи диссертационной работы и изложено ее краткое содержание.

В первой главе рассматривается поведение одиночного колоннообразного вихря в однородной стационарной неравновесной среде с учетом зависимости энерговыделения от параметров течения:

температуры и плотности.

Параграф 1.1 посвящен постановке задачи. Изменение параметров одиночного колоннообразного вихря в однородной стационарной неравновесной среде описывается системой уравнений газовой динамики для вязкого сжимаемого газа с добавлением энерговыделения Q в правую часть уравнения энергии. Описываются две модели энерговыделения:

1. энерговыделение, зависящее от температуры eq (T ) eq (T ) Q(T ) =, (1) (T ) (T ) где энергия внутренних степеней свободы, поддерживающаяся постоянной за счет внешнего источника, 2. использованная в работе [4] модель энерговыделения, зависящего от плотности Q() = q. (2) Обе модели содержат постоянную теплоотдачу, компенсирующую сброс энергии из внутренних степеней свободы молекул в поступательные в неподвижной среде. Приводятся выражения для изменения параметров в исходном течении одиночном колоннообразном вихре. Обсуждаются упрощения, сделанные при постановке задачи.

В параграфе 1.2 описывается механизм взаимодействия вихревых структур с неравновесной средой: изменение величины энерговыделения в зависимости от параметров течения, которые могут меняться в результате действия энерговыделения.

Параграф 1.3 посвящен описанию численного метода (метод Годунова первого порядка точности) и граничных условий, используемых при численном моделировании. Демонстрируется сходимость численного решения с уменьшением шага сетки.

В параграфе 1.4 приведены результаты численного моделирования эволюции вихря в среде с энерговыделением, зависящим от температуры.

Показано, что выделение энергии приводит к образованию волны, которая уходит от центра вихря, унося часть вещества и меняя профиль угловой скорости. В результате взаимодействия вихрь переходит в новое состояние, а не исчезает. Обсуждается влияние вязкости, величины времени релаксации и начального распределения плотности на процесс изменения характеристик вихря.

Параграф 1.5 посвящен выводу аналитических решений, описывающих процесс изменения характеристик вихря и соответствующих предельным случаям быстрой и медленной релаксации. Проведено сравнение аналитических решений с результатами численного моделирования.

В параграфе 1.6 рассматривается устойчивость стационарной неравновесной среды относительно малых возмущений. Показано, что, в отличие от среды с энерговыделением, зависящим от температуры, среда с энерговыделением (2), зависящим от плотности, всегда неустойчива.

Развитие перегревно-ионизационной неустойчивости при отрицательных значениях параметра q объясняет полученные в работе [4] результаты, которые интерпретировались авторами работы как быстрое исчезновение вихря в неравновесной среде.

Во второй главе рассматривается эволюция одиночного колоннообразного вихря, вызванная начальным локальным возбуждением внутренних степеней свободы. В отличие от первой главы, неравновесное состояние среды описывается с помощью одного дополнительного уравнения релаксации энергии внутренних степеней свободы. Такая постановка задачи более точно соответствует реальному воздействию на вихрь, так как позволяет учесть неоднородность неравновесной среды.

Сначала рассматривается случай осесимметричного энерговыделения (параграф 2.1), в предельных случаях быстрой и медленной релаксации получены аналитические решения и проведено сравнение с результатами численного моделирования для разных значений времени релаксации.

Как и в первой главе, процесс изменения характеристик вихря состоит из релаксации начального возбуждения и распространения волны, вызванной выделением энергии. Так как, согласно существующим экспериментальным данным [8], часть энергии разряда может непосредственно переходить в тепло, в параграфе 2.2 рассмотрен случай мгновенного перехода в тепло части вложенной энергии при медленной релаксации остальной энергии. Показано, что, хотя медленная релаксация, в отличие от мгновенного перехода в тепло, не приводит к образованию заметной волны, изменение угловой скорости обусловлено, в основном, медленно релаксировавшей частью энергии. Далее, с помощью численного моделирования методом Годунова второго порядка точности анализируется образование вторичного течения, приводящего к увеличению угловой скорости вихря, в случае конечной протяженности зоны возбуждения вдоль оси вихря (параграф 2.3). Профили изменения угловой скорости по сравнению с исходным состоянием непосредственно после ухода основной волны и после завершения перераспределения массы, вызванного вторичным течением, показаны на Рис. 1.

Рис. 1. Радиальные профили изменения угловой скорости (м/с). Пунктиром показан профиль непосредственно после ухода основной волны (до начала вторичного течения), сплошной линией окончательное состояние.

Затем (параграф 2.4) рассматриваются новые явления, возникающие в неосесимметричном случае, когда центр области возбуждения не совпадает с центром вихря, а именно, закручивание области горячего легкого газа, остающейся после ухода основной волны, в спираль, а также падение нагретого газа на центр вихря в результате нарушения баланса между центробежной силой и градиентом давления. Установлено, что последующее перемешивание приводит к осесимметричному состоянию вихря, причем роль диссипативных процессов в ходе перемешивания может расти.

Так как релаксация начального возбуждения внутренних степеней свободы приводит к увеличению температуры и уменьшению плотности в зоне возбуждения, а вихрь, в котором плотность в центре превышает плотность на периферии, неустойчив, в параграфе 2.5 в качестве примера рассматривается развитие вихревой неустойчивости Рэлея-Тейлора в случае периодической накачки энергии во внутренние степени свободы молекул в кольцевой области. Результат развития неустойчивости эллиптический вихрь с двумя спиральными рукавами показан на Рис. 2.

Третья глава посвящена вопросу об определении интегралов движения для вихря в неравновесной релаксирующей среде. Существуют две основные проблемы: во-первых, обычные интегралы движения, такие как кинетическая энергия, могут расходиться для вихрей, а во-вторых, волна, вызванная выделением энергии в неравновесной среде, уносит часть массы из любой конечной рассматриваемой области, что приводит к нарушению законов сохранения, записанных для конечной области. Первая из этих проблем широко известна, и для ее решения предложен ряд методов [9, 10], но только для несжимаемой жидкости. Вторая проблема в приближении несжимаемой жидкости отсутствует, и потому до настоящего момента не рассматривалась.

Рис. 2. Результат развития неустойчивости Рэлея-Тейлора при накачке энергии во внутренние степени свободы в кольцевой области. Распределение плотности (кг/м3 ).

В параграфе 3.1 для случая осесимметричной эволюции вихря излагается подход, позволяющий найти величины, сохраняющиеся в конечной области с произвольной точностью, несмотря на то, что масса в этой области не сохраняется. Кратко, он заключается в следующем:

искомые величины A (например, момент импульса A = v r) должны удовлетворять закону сохранения в дифференциальной форме dA + A div v = 0 (3) dt и убывать достаточно быстро с удалением от оси вихря, чтобы интеграл Ardrd сходился, а поток величины A через границу конечной области за время прохождения волны стремился к нулю при увеличении радиуса области. Тогда можно выбрать достаточно большую область интегрирования, чтобы закон сохранения выполнялся для нее с произвольной точностью. Для осесимметричной эволюции вихря с помощью описанного подхода получен широкий класс интегралов движения, включающий полный момент импульса и циркуляцию.

В параграфе 3.2 предлагается обобщение изложенного подхода на случай неосесимметричной эволюции, в частности, показано, что полный момент импульса сохраняется и при неосесимметричном воздействии, несмотря на то, что правая часть уравнения (3) в этом случае не равна нулю.

В параграфе 3.3 рассмотрен закон сохранения полной энергии, предложена модификация выражения для полной энергии, позволяющая учесть вынос волной части вещества, обладающей определенной энергией, за пределы рассматриваемой области.

В четвертой главе рассматривается влияние неравновесного состояния среды на структуру вихревой дорожки Кармана, образующейся при обтекании круглого цилиндра потоком неравновесного газа. Численное моделирование выполнено с использованием трех различных моделей среды, отличающихся полнотой учета сжимаемости. Как и во второй главе, неравновесное состояние среды учитвается с помощью одного уравнения релаксации энергии внутренних степеней свободы.

Параграф 4.1 посвящен описанию моделей среды и методов численного моделирования, а также граничных условий.

В параграфе 4.2 приведены результаты численного моделирования:

зависимости числа Струхаля (безразмерной частоты вихревой дорожки) и коэффициента сопротивления от числа Рейнольдса в равновесном газе и их сравнение с известными экспериментальными данными, а также новые результаты, полученные для неравновесного газа. Показано, что релаксация энергии внутренних степеней свободы приводит к неравномерному нагреву газа: во-первых, чем дальше продвигается объем газа вниз по течению, тем выше становится его температура, а во-вторых, газ, попадающий в вихри дорожки Кармана, движется дольше и успевает получить больше энергии из внутренних степеней свободы. Рассчитанное поле температуры показано на Рис. 3.

Рис. 3. Распределение температуры (К) при обтекании круглого цилиндра потоком неравновесного газа.

Обнаружено, что изменение плотности и давления в результате неравномерного нагрева приводит к изменению параметров образующихся вихрей. Вихри становятся менее интенсивными в центре и более интенсивными по краям. Распределение давления в вихре вдоль оси, перпендикулярной направлению течения, показано на Рис. 4. Изменение характеристик вихрей может приводить как к ослаблению основной гармоники в спектре пульсаций скорости в следе за цилиндром, так и к ее ослаблению, в зависимости от положения точки, в которой регистрируются пульсации. Рассчитанные спектры пульсаций скорости качественно Рис. 4. Распределение давления в одном из вихрей дорожки Кармана вдоль оси, перпендикулярной направлению течения, в равновесном (черные ромбы) и неравновесном (серые треугольники) газе.

согласуются с результатами экспериментов [11, 12, 13], в которых внутрь проточного лазера для улучшения перемешивания и снижения нагрева устанавливался турбулизатор в виде цилиндра. Проведенное численное моделирование показывает, что при наличии цилиндра максимальная температура газа в области не уменьшается, а напротив, повышается за счет задержки газа за цилиндром и дополнительного релаксационного нагрева. Обнаружено снижение сопротивления в неравновесном газе примерно на 10%. Также проведено сравнение результатов, полученных с помощью трех разных моделей среды. Показано, что модель почти несжимаемой жидкости не описывает сдвиг в спектре дорожки Кармана в неравновесном газе, а результаты, полученные с помощью полной и упрощенной моделей сжимаемой жидкости, очень близки, если релаксационные эффекты преобладают над эффектами, связанными со сжимаемостью.

В заключении сформулированы основные результаты и выводы.

3 Основные результаты и выводы 1. Проведено подробное исследование поведения одиночных вихрей в неравновесной среде, которое позволило решить следующие задачи:

(а) Задача о вихре в стационарной неравновесной среде: показано, что в устойчивой среде в результате взаимодействия с энерговыделением вихрь переходит в новое стационарное состояние, а не исчезает и не распадается. В неустойчивой среде независимо от наличия вихря происходит усиление малых возмущений, и вся система переходит в другое состояние.

(б) Задача об изменении параметров вихря в результате начального возбуждения внутренних степеней свободы молекул: показано, что эволюция вихря, которая зависит от геометрии и параметров начального возбуждения в любом случае приводит к стационарному осесимметричному состоянию с несколько измененными параметрами. Основные отличия конечного состояния вихря от начального заключаются в повышении температуры и понижении плотности вблизи центра вихря и соответствующем изменении угловой скорости. Показано, что результат эволюции вихря практически не зависит от скорости сброса энергии в поступательные степени свободы.

2. Для осесимметричного случая найден обширный класс интегралов движения, для неосесимметричного случая показано, что сохраняются полный момент импульса и полная энергия, выражение для которой модифицировано с учетом уноса части массы.

3. Решение классической гидродинамической задачи об обтекании потоком газа круглого цилиндра с образованием дорожки Кармана обобщено на случай неравновесного газа. Проведено численное моделирование задачи с учетом взаимодействия газодинамических и релаксационных процессов. Показано, что воздействие на проточные вихревые течения более эффективно, чем на одиночные вихри, так как меняются не характеристики существующего вихря, а условия образования вихрей в течении. Показано, что использование турбулизирующего препятствия в среде газодинамического лазера приводит к дополнительному релаксационному нагреву. Найдено, что для расчетов течений неравновесного газа, если эффекты сжимаемости малы по сравнению с релаксационным нагревом, можно использовать упрощенную модель сжимаемой среды, требующую меньшего времени расчета.

4. Для численного моделирования динамики вихрей в неравновесной среде построены обобщения численных схем Годунова первого и второго порядков, схемы Лакса-Вендроффа, неявной схемы на основе схем Кранка-Николсона и Рунге-Кутта, метода виртуальных границ для неравновесной среды. Разработанные методы и программы могут быть применены для решения аналогичных задач газовой динамики.

4 Публикации Результаты работы представлены в следующих основных публикациях:

1. Осипов А.И., Уваров А.В., Винниченко Н.А., Рощина Н.А.

Нелинейные задачи гидродинамики: вихревые структуры в неравновесном газе // Нелинейный мир, 2005, т.3, № 1-2, с.40– 47.

2. Винниченко Н.А., Никитин Н.В., Уваров А.В. Вихревая дорожка Кармана в колебательно-неравновесном газе // МЖГ, 2005, № 5, с.107–114.

3. Osipov A.I., Uvarov A.V., Vinnichenko N.A. Inuence of the initial nonequilibrium state of a medium on the structure of von Karman vortex street // Phys. Fluids, 2006, v.18, N 10, 105106.

4. Винниченко Н.А. Образование дорожки Кармана при обтекании цилиндра колебательно-возбужденным молекулярным газом // Конференция "Ломоносов-2004", Москва, с.174–175.

5. Osipov A.I., Uvarov A.V., Vinnichenko N.A., Roschina N.A. Vortex struc tures in a non-equilibrium gas // Minsk International Colloquium on physics of shock waves, combustion, detonation and non-equilibrium pro cesses, 2005, Minsk, pp.139–140.

6. Винниченко Н.А., Осипов А.И., Уваров А.В. Анализ нелинейного взаимодействия вихревых структур с неравновесной газовой средой // Труды четвертой всероссийской конференции "Необратимые процессы в природе и технике", 2007, Москва, с.231–233.

7. Винниченко Н.А., Осипов А.И., Уваров А.В. Эволюция одиночного вихря в неравновесной среде // Тезисы докладов XV школы-семинара "Современные проблемы аэрогидродинамики", 2007, Сочи, с.27–28.

8. Винниченко Н.А., Осипов А.И., Уваров А.В. Взаимодействие одиночного вихря с неравновесной средой при наличии энерговклада // Тезисы докладов Всероссийского семинара по аэрогидродинамике, 2008, Санкт-Петербург, с.102.

9. Vinnichenko N.A., Uvarov A.V., Osipov A.I. Modication of a single vor tex in a medium with internal heat // The third international workshop "Nonequilibrium processes in combustion and plasma based technolo gies", 2008, Minsk, pp.75–78.

5 Цитируемая литература 1. Пимонов Е.А. Численное моделирование сверхзвуковх течений в условиях воздействия локализованного энергоподвода // диссертация на соискание степени к.ф.-м.н., 2007, Новосибирск.

2. Казаков А.В. Влияние объемного подвода энергии на закрученные течения в спутном дозвуковом потоке // МЖГ, 1998, № 6, c.47–53.

3. Казаков А.В. Влияние объемного подвода энергии на устойчивость закрученного дозвукового потока // МЖГ, 2003, № 4, c.56–65.

u 4. Soukhomlinov V.S., Sheverev V.A., Otgen M.V. Evolution of a vortex in glow discharge plasma // Phys. Fluids, 2005, v.17, N 5, 058102.

5. Завершинский И.П., Климов А.И., Молевич Н.Е., Порфирьев Д.П.

Эволюция вихря Рэнкина в газе с источником тепловыделения // Письма в ЖТФ, 2009, т.35, № 7, с.106–110.

6. Попов Н.А. Влияние неравновесного возбуждения на воспламенение водород-кислородных смесей // ТВТ, 2007, т.45, № 2, с.296–315.

7. Сахаров В.И. Численное моделирование термически и химически неравновесных течений и теплообмена в недорасширенных струях индукционного плазмотрона // МЖГ, 2007, № 6. с.157–168.

8. Znamenskaya I.A., Koroteev D.A., Lutsky A.E. Discontinuity breakdown on shock wave interaction with nanosecond discharge // Phys. Fluids, 2008, v.20, N 5, 056101.

9. Алексеенко С.В., Куйбин П.А., Окулов В.Л. Введение в теорию концентрированных вихрей. Москва–Ижевск: Институт компьютерных исследований, 2005.

10. Сэффмэн Ф.Дж. Динамика вихрей. М.: Научный мир, 2000.

11. Гембаржевский Г.В., Генералов Н.А., Соловьев Н.Г. Исследование спектра пульсаций скорости вихревого течения колебательно возбужденного молекулярного газа в тлеющем разряде // МЖГ, 2000, № 2, с.81–91.

12. Гембаржевский Г.В., Генералов Н.А. О модели турбулентного течения ближнего следа в тлеющем разряде // ТВТ, 2004, т.42, № 4, с.501–505.

13. Гембаржевский Г.В., Генералов Н.А. Вихревое течение в электроразрядном лазере // Математическое моделирование, 2001, т.13, № 7, с.11–16.



 

Похожие работы:





 
2013 www.netess.ru - «Бесплатная библиотека авторефератов кандидатских и докторских диссертаций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.