авторефераты диссертаций БЕСПЛАТНАЯ  БИБЛИОТЕКА

АВТОРЕФЕРАТЫ КАНДИДАТСКИХ, ДОКТОРСКИХ ДИССЕРТАЦИЙ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

На правах рукописи

СРУМОВА ФРИЗА ВАХИДОВНА

АСИМПТОТИКА ЭНЕРГИИ ДЛЯ НЕКОТОРЫХ

КЛАССОВ УРАВНЕНИЙ ГИПЕРБОЛИЧЕСКОГО

ТИПА

01.01.02- Дифференциальные уравнения, динамические

системы и оптимальное управление

Автореферат

диссертации на соискание ученой степени доктора физико-математических наук

Душанбе 2012 2

Работа выполнена в Таджикском национальном университете Республики Таджикистан

Научный консультант: доктор физико–математических наук, академик АН РФ, профессор Ильин Владимир Александрович

Официальные оппоненты: доктор физико–математических наук, профессор Исмати Мухаммаджон доктор физико–математических наук, Мухсинов Абдулкосим доктор физико–математических наук, Сафаров Джумабой

Ведущая организация: Московский государственный университет им. М.В.Ломоносова, факультет вычислительной математики и кибернетики

Защита состоится 23 мая 2012 в 11 00 часов на заседании диссертационного совета ДМ 047.007.01. при Институте математики Академии наук Республики Таджикистан по адресу: 734063, г. Душанбе, ул. Айни 299/4.

С диссертацией можно ознакомиться в библиотеке Института математики АН РТ.

Автореферат разослан “_” 2012 г.

Ученый секретарь диссертационного совета Халилов Ш.Б.

Общая характеристика работы

Актуальность темы. Во введении обосновывается актуальность темы и излагаются основные результаты диссертации. Асимптотика энергии для некоторых классов уравнений гиперболического типа в последние десятилетия привлекает пристальное внимание математиков, физиков и инженеров, которое объясняется в первую очередь перспективами использования данного материала.

Несмотря на широкое научное и практическое применение данного материала, углубленное исследование их свойств представляется актуальным и в настоящее время. В частности, новые перспективы открывает использование линейной системы уравнений Максвелла первого порядка для вычисления асимптотики энергии для нелинейной системы уравнений Максвелла.

В данной работе нашли безусловное отражение основополагающие работы В.А. Ильина, А.А. Арсеньева, В.Д.Носова, О.А. Ладыженской, И. Кенджаева, М. Исматова, N.A. Schenk, Т.Jkebe, В.П. Михайлова, А.М.Пыжьянова, Л.Фелсен, Н.Марковец, K.Mochizuki, Н.Е.Ратанова, Л.М.Лямшева, А.В.Фурдуева, Б.Н. Челнокова, И.И.Гихман, А.В.Скороход, Б.М.Левитана.

Цель и задачи исследования. Цель настоящей работы заключается в установлении асимптотических формул энергии, излученной различными источниками, для решения линейных и нелинейных уравнений в частных производных.

Методика исследования. Основными методами исследования явились метод разложения по собственным функциям дифференциальных операторов, метод Фурье или метод разделения переменных, современные методы теории функций, функционального анализа и математической физики. Рассматриваются дискретный и непрерывные спектры.

Научная новизна 1. Вычислена асимптотика энергии, излученной почти периодическим источником колебаний, для уравнений высшего порядка.

2. Вычислена асимптотика энергии, излученной в пространство почти периодическим источником электромагнитных волн, для линейной системы уравнений Максвелла первого порядка.

3. Установлена асимптотика энергии, излученной почти периодическим источником электромагнитных колебаний в волноводе, для линейной системы уравнений Максвелла первого порядка.

4. Вычислены асимптотики энергии для решения волнового уравнения во внешней области “ловушечного” типа.

5. Получена асимптотика энергии для абстрактной задачи Коши, симметрической гиперболической системы, для абстрактного волнового уравнения и для волноводов.

6. Вычислена асимптотика энергии для эволюционной стохастической системы уравнений.

7. Вычислена асимптотика энергии, излученной случайно расположенными источниками колебаний.

8. Исследованы резонансные свойства энергии, излученной распределенным по Пуассону точечным источником колебаний.

9. Вычислена асимптотика энергии случайных источников колебаний для абстрактной задачи Коши.

10. Вычислена асимптотика энергии, излученной во внешнюю среду случайным источником колебаний.

11. Вычислена асимптотика энергии для решения уравнения генерации звука в жидкости.

12. Дано обоснование обобщенного метода Римана (т.е. теории рядов Фурье по фундаментальной системе функций полигармонического оператора).

Практическая и теоретическая значимость. Результаты, полученные на основе данной работы, носят теоретической характер и могут быть применены для дальнейшего изучения аналогичных задач получения асимптотики энергии, излученной различными источниками, для решений уравнений с частными производными и для линейных либо нелинейных систем уравнений Максвелла, эволюционных стохастических систем уравнений. Результаты работы можно использовать в теории поля, теории упругости, теории рассеяния, при изучении задач физики плазмы, в теории кратных ортогональных рядов и интегралов Фурье.



Исследования автора также имеют большое практическое значение в математической физике, могут быть использованы при обосновании метода разделения переменных при решении краевых задач.

Апробация работы. Материалы диссертации докладывались и обсуждались на научном семинаре под руководством академика РАН В.А.

Ильина, профессора Ш.А. Алимова, профессора А.А. Арсеньева (МГУ), на Всесоюзном симпозиуме по дифференциальным и интегральным уравнениям (г.Душанбе, октябрь 1972г.), на Республиканской научной конференции по уравнениям математической физики (Душанбе, 27-28 сентября 1983г.), на Всесоюзной конференции по теории функций и приложениям функционально-дифференциальных уравнений (Душанбе, 27 декабря 1987г.),на Всесоюзной школе молодых ученых “Функциональные методы в прикладной математике и математической физике” (Ташкент,11- мая1988г.), на Республиканской научной конференции, посвященной памяти Т.Собирова “О некоторых применениях функционального анализа в теории дифференциальных уравнений”. (Душанбе, 1990г), на Международной научной конференции, посвященной 10-йгодовщине Независимости Республики Таджикистан и 80-летию профессора М.А. Субханкулова “Методы теории функций и их приложения” (Душанбе, 5-7 сентября 2000 г.), на Республиканской научно-теоретической конференции, посвященной 70-летию профессора М.М. Каримовой “Современные проблемы теории функций, дифференциальных уравнений и их приложения” (Душанбе, 2007г.), на Республиканской научной конференции, посвященной 60-летию образования ТГНУ и 70-летию академика АН РТ Н.Р. Раджабова “ Дифференциальные и интегральные уравнения” (Душанбе, 2008г.), на Ежегодных апрельских научно-практических конференциях ТГНУ.

(Душанбе, 1970-2008 гг.), на Международной конференции “Наука и современное образование, проблемы и перспективы”, посвященной 60-летию ТГНУ(Душанбе, 2008г), на Международной научной конференции “Современные проблемы физики”, посвященной Году образования и технического знания (Душанбе, 2010г.) и на научном семинаре член-корр., профессора Х.Х.Муминова, на седьмой научно-практической конференции (Прага 2011г.).

Публикации. По теме диссертации опубликовано 40 работ.

Структура и объем работы. Диссертация состоит из введения, семи глав и списка литературы. Работа изложена на 152 страницах машинописного текста.

Библиография насчитывает 74 наименования.

При написании работы придерживались следующего правила. Для обозначения теорем, лемм, иногда и определений используется тройная нумерация: первая - главы, вторая- номер параграфа, третья – текущий номер утверждения.

В первой главе дается краткий исторический обзор результатов по затрагиваемым проблемам.

Во второй главе вычислена асимптотика энергии, излученной почти периодическим источником колебаний при t.

В параграфе 1 этой главы вычислена асимптотика энергии, излученной почти периодическим источником колебаний при t в произвольной N - мерной области [1],[2],[14].

Рассматривается уравнение где Т - неотрицательное самосопряженное расширение оператора ()m в произвольной N - мерной области, N 2, отвечающее нулевым краевым условиям, а свободной член f (x, t) есть почти периодическая функция, удовлетворяющая условию Для уравнения (1) рассматриваем следующую задачу: вычислить асимптотику энергии при t решения этого уравнения, удовлетворяющего начальным условиям и краевым условиям где n- внешняя нормаль к границе области.

Рассматриваем ограниченную N мерную область G, граница которой предполагается бесконечно гладкой.

Пусть (x, t) D(T ), a f (x, t) D(T m ), {n } система собственных чисел, а { Un (x)} полная система им соответствующих ортонормированных собственных функций расширения T L2 (G), fn (t) коэфmr фициенты Фурье функции f (x, t) по системе { Un (x)}, W2, r целое число - пространство С.Л. Соболева функций с нормой · W22mr Рассмотрим случай неограниченной цилиндрической области G с сечением, граница которой бесконечно гладкая. Обозначим через {n }систему собственных чисел и {un (P )}- соответствующую систему собственных функций расширения T в L2 (), отвечающего нулевым краевым условиям.

В §2 вычислена асимптотика энергии при t в слое R2 [0, l].

Энергией E(t) называем интеграл где классическое решение рассматриваемой задачи Теорема. Пусть 1) jn (x) L2 ( ), 2) n = 0 для всех n и n есть точка Лебега функции S (jn )(r).

Тогда Во втором параграфе этой главы доказана следующая теорема:

- решение задачи рассеяния вблизи резонанса.

функция Функции ±, j, e± удовлетворяют следующим условиям:

Рассматриваем следующую задачу Коши:

Ее решение имеет вид:

где интеграл понимается в смысле Бохнера, т. е. как предел интегральных сумм вида:

Назовем энергией для решения рассматриваемой задачи функцию (см.[6]) Лебега функции Тогда Во втором параграфе вычислена асимптотика энергии при t для симметрической гиперболической системы.

Рассматривается система уравнений Вычислена асимптотика энергии по формуле где В третьем параграфе вычислена асимптотика энергии при t для абстрактного волнового уравнения. 0 - гильбертово пространство скалярным произведением (, ), В - самосопряженный, положительноопределенный оператор в 0, /2 - положительный квадратный корень из оператора.

В пространстве 0 рассматриваем абстрактное волновое уравнение Теорема. Пусть an H0, n = 0 для всех n, n (B), n точка Лебега функции bn (), тогда В четвертом параграфе B = (A1 + A2 )самосопряженный положительно - определенный оператор в H0. В пространстве H0 рассматриваем абстрактное волновое уравнение.

Теорема. Пусть an H0, n = 0 для всех n, n ((a1 + a2 ) /2 ) u n - точка Лебега функции bn (), тогда где Во втором параграфе вычислена асимптотика энергии случайных источников колебаний для абстрактной задачи Коши [7] где an - случайная функция со значениями в, n - случайная функция со значениями в R1.

Утверждение. При больших временах асимптотика математического ожидания энергии (t) будет такой, как если бы f (t) и f (t ) были независимы, Тогда В третьем параграфе вычислена асимптотика энергии, излученной случайно расположенными источниками колебаний.

Пусть R3 - трехмерное евклидово пространство, - открытая область в R3, которая содержит внешность некоторой сферы. Граница области принадлежит классу A(1,), > 0.

Рассматривается смешанная задача Пуассона с интенсивностью m(q); (x, 0) = 0, Пусть (x, t)- классическое решение задачи. Вопрос о существовании и единственности решения дано в работах А.А. Арсеньева. Энергией назовем интеграл.

C0 (R3 ), то для математического ожидания энергии справедлива формула [8] В четвертом параграфе этой главы вычислена асимптотика энергии для решения эволюционной стохастической системы уравнений [9].

Рассмотрена начально-краевая задача для эволюционной стохастической системы уравнений:

интеграл стохастический, k (x), exp (ik )- предсказуемое функции, k - белый шум, представляющий собой винеровский процесс на R1, 1 0 самосопряженный эллиптический оператор в L2 (D), где D открытая область в R3, содержащая внешность некоторой сферы, граница которой принадлежит классу A(1, ), > 0. Пусть t - классическое решение рассматриваемой задачи.

Теорема. Пусть случайные функции n, k - независимы, M (n = m ) = 0, n = m, µ (|n |) > 0) для любого n и все реализации k (x) C0 (R3 \ D), тогда В пятом параграфе этой главы изучены резонансные свойства энергии, излученной случайно расположенными источниками колебаний [10].

Рассматривается смешанная задача где µ(q) случайная мера Пуассона с интенсивностью m(q), В шестом параграфе этой главы вычислена асимптотика энергии, излученной во внешнюю среду источникам шума [39].

Пусть RN N мерное евклидово пространство (N 3), - открытая область в RN, которая содержит внешность некоторой сферы. Граница области принадлежит классу A(1, ), > 0. Рассматриваем смешанную задачу Здесь > 0 малый параметр, f (t, x)- источник шума, который представим в виде ( ) - винеровский процесс, а (x, ) есть непрерывная функция от со значениями в L2 (R3 ).

Энергией решения задачи назовем интеграл Теорема. 1. Если (x, ) не зависит от, то В седьмой главе изучается поведение энергии при акустическом рассеянии.

Рассматривается смешанная задача для уравнения акустики [21].

Теорема. Пусть граница области D достаточно гладкая и D содержит внешность сферы. Пусть fn (x) L2 (D), n = 0 для всех n |n | есть точка Лебега функции S(fn ) (r).

Тогда Вычислена также асимптотика энергии для решения волнового уравнения генерации звука в жидкости [40].

Теорема. Пусть граница области D достаточно гладкая и область D содержит внешность сферы. Пусть fn (x) L2 (D), n = 0 для всех n u |n | есть точка Лебега функции S (fn ) (r), тогда где Основные результаты диссертации опубликованы в следующих работах:

1. Срумова Ф. В. Об абсолютной и равномерной сходимости обобщенного интеграла Фурье / Ф.В.Срумова // Дифференциальные уравнения. - 1971.-Т.7,№7.-С.1333 –1338.

2. Срумова Ф.В. Вычисление асимптотики энергии, излученной почти периодическом источником колебаний при t / Ф.В. Срумова// Дифференциальные уравнения.- 1977.-Т.13, №7.- С. 1272-1280.

3. Срумова Ф.В.Об асимптотике энергии, излученной в пространство почти периодическим источником электромагнитных волн /Ф.В.

Срумова// Дифференциальные уравнения.- 1980.-Т.16, №3.-С. 560 – 4. Срумова Ф.В. Об асимптотике энергии, излученной почти периодическим источником электромагнитных колебаний в волноводе / Ф.В.

Срумова //Дифференциальные уравнения.-1982.-Т. 18, №11.-С. 5. Срумова Ф.В. Резонансные свойства энергии во всем пространстве/ Ф.В.Срумова//Дифференциальные уравнения.-1984.-Т. 20, №4.-С. 6. Срумова Ф.В. Функционал энергии для абстрактной задачи Коши/ Ф. В. Срумова //Журн. вычисл. математики и мат. физики.-1984.Т.24, №8.- С.1129 – 1135.

7. Срумова Ф. В. Об асимптотике энергии случайных источников колебаний для абстрактной задачи Коши /Ф.В. Срумова //Дифференциальные уравнения.- 1989.-Т.25, №1.-С. 177-178.

8. Срумова Ф.В.Об асимптотике энергии, излученной случайно расположенными источниками колебаний /Ф.В. Срумова //Журн. вычисл.

математики и мат. физики. -1989.-Т. 29, №4.-С. 626 – 627.

9. Срумова Ф. В. Вычисление асимптотики энергии для решения эволюционной стохастической системы уравнений / Ф.В. Срумова // Журн. вычисл. математики и мат. физики. -1989.-Т.5, №5.-С. 794 – 10. Срумова Ф.В. Резонансные свойства энергии, излученной случайно расположенными источниками колебаний/Ф.В. Срумова//Журн. вычисл.матем. и матем.физ.-1991.-Т.30,№7.-С.1092 – 1093.

11. Срумова Ф. В. Об абсолютной и равномерной сходимости обобщенного интеграла Фурье / Ф.В. Срумова // Докл. АН Тадж ССР.-1970.-Т.

13, №1.- С. 11-14.

12. Срумова Ф.В. О спектральных разложениях, связанных с полигармоническим оператором /Ф.В. Срумова // Докл. АН Тадж ССР.-1972.Т. 15, №6.-С. 10-12.

13. Срумова Ф.В. О принципе локализации для рядов Фурье по фундаментальной системе функций полигармонического оператора /Ф.В.

Срумова // Докл. АН Тадж ССР.- 1972.-Т. 15, №9.-С. 15-18.

14. Срумова Ф. В. К вопросу о вычислении асимптотики энергии, излученной почти периодическим источником колебаний при t /Ф.В.Срумова//Докл. АН ТаджССР.-1976.-Т.19, №11.-С.7 - 9.

15. Срумова Ф. В. Об асимптотике энергии, излученной в пространство почти периодическим источником электромагнитных волн/ Ф.В.

Срумова // Докл. АН Тадж ССР.-1978.-Т. 21, №5.-С. 18 – 20.

16. Срумова Ф. В. О суммируемости обобщенным методом Римана рядов Фурье по фундаментальной системе функций полигармонического оператора /Ф.В. Срумова//Сборник трудов механикоматематического факультета ТГУ по теории функций и функциональному анализу. -Душанбе, 1979.- С. 61-63.

17. Срумова Ф. В. Об асимптотике энергии случайных источников колебаний /Ф.В. Срумова//Докл. АН Тадж ССР.-1986.-Т. 29, №19.-С. 18. Срумова Ф.В. Вычисление асимптотики энергии при больших временах /Ф.В. Срумова.- Душанбе, 1991.- 88 с.

19. Срумова Ф.В. Энергия для одной абстрактной задачи Коши/Ф.В.

Срумова // Конференция по уравнениям математической физики.

-Душанбе,1983.-С. 97 – 98.

20. Срумова Ф.В. Об асимптотике энергии случайных источников колебаний для одной абстрактной задачи Коши /Ф.В. Срумова // Тезисы докладов всесоюзной конференции по теории и приложениям функционально – дифференциальных уравнений.-Душанбе, 1987.-С.

111-112.

21. Срумова Ф. В. Поведение энергии при акустическом рассеянии /Ф.В.Срумова //Тезисы докладов Всесоюзной школы молодых ученых “Функциональные методы в прикладной математике и математической физике”.-Ташкент, 1988.- С. 82-83.

22. Срумова Ф.В. Резонансные свойства энергии, излученной случайно расположенными источниками колебаний /Ф.В. Срумова // Материалы республиканской конференции, посвященной памяти Т. Собирова. “О некоторых применениях функционального анализа в теории дифференциальных уравнений”.- Душанбе, 1990.-С. 171-172.

23. Срумова Ф.В. Резонансные свойства энергии, излученной случайно расположенными источниками колебаний /Ф.В.Срумова //Тезисы докладов научно-теоретической конференции профессорскопреподавательского состава.- Душанбе,1991.-С. 11.

24. Срумова Ф.В. Об асимптотике энергии, излученной в пространство источником шума/Ф.В. Срумова //Тезисы докладов республиканской научной конференции “Дифференциальные уравнения и их приложения”.-Куляб, 1991.- С. 154.

25. Срумова Ф. В. Об асимптотике энергии, излученной во внешнюю среду случайным источником колебаний /Ф.В. Срумова // Тезисы докладов апрельской научно - теоретической конференции профессорско- преподавательского состава. –Душанбе,1992.-С. 12.

26. Срумова Ф. В. Об асимптотике энергии, излученной во внешнюю среду случайным источником шума /Ф.В. Срумова //Международная конференция “Дифференциальные уравнения с сингулярными коэффициентами”.- Душанбе, 1996.-С. 84.

27. Срумова Ф.В. Резонансные свойства энергии, излученной расположенным по Пуассону точечным источником колебаний /Ф.В. Срумова // Вклад женщин-ученых Таджикистана в науку.-Душанбе, 1996.-С. 46-47.

28. Срумова Ф. В. Об асимптотике энергии, излученной распределенным по Пуассону точечным источником колебаний/Ф.В. Срумова // Международная конференция “Дифференциальные уравнения и их приложения”.- Душанбе, 1998.-С.80.

29. Срумова Ф.В. О поведении энергии решения абстрактной задачи Коши при больших временах /Ф.В. Срумова // Материалы международной научной конференции, посвященной 10 –й годовщине независимости Республики Таджикистан и 80-летию профессора М.А. Субханкулова “Методы теории функций и их приложения”.- Душанбе, 30. Срумова Ф. В. Об асимптотике энергии случайных источников колебаний для симметрической гиперболической системы уравнений/ Ф.В. Срумова// Материалы научно - теоретической конференции профессорско – преподавательского состава и студентов.- Душанбе, 31. Срумова Ф. В. Поведение энергии решения волнового уравнения генерации звука в жидкости /Ф.В. Срумова // Материалы научно - теоретической конференции профессорско-преподавательского состава.Душанбе, 2003.-С. 12.

32. Срумова Ф.В. Об асимптотике энергии случайных источников колебаний для решения абстрактного волнового уравнения /Ф.В. Срумова // Материалы научно-теоретической конференции профессорского состава и студентов, посвященной 80- летию города Душанбе “ Душанбе символ мира, науки и просвещения”.- Душанбе, 2004.- Ч.1.С.22.

33. Срумова Ф.В. Вычисление асимптотики энергии при акустическом рассеянии /Ф.В. Срумова // Материалы научно-теоретической конференции профессорско-преподавательского состава и студентов, посвященной 60-летию победы в Великой отечественной войне “Во имя мира и счастья на земле”.- Душанбе, 2005. Ч.1.-С. 13.

34. Срумова Ф.В. О резонансных свойствах энергии, излученной случайными источниками колебаний в трехмерном пространстве/Ф.В. Срумова//Материалы научно – теоретической конференции профессорско - преподавательского состава и студентов, посвященной “ 15 – ой годовщине независимости Республики Таджикистан”, “2700 - летию Куляба и году арийской цивилизации”.- Душанбе, 2006. Ч.1.-С.16.

35. Srumova F.V. Resonance properties of energy in the whole space / Ф.В.

Срумова//Материалы конференции профессорско – преподавательского состава и студентов, посвященной 800-летию поэта великого мыслителя Мавлоно Джалолуддина Балхи. – Душанбе, 2007.-С. 53Srumova F.V. Calculation of energy asymptotic emitted to the space by near periodic source of electromagnetic wave/ Ф.В. Срумова // Материалы научно- теоретической конференции. Современные проблемы теории функций и дифференциальных уравнений и их приложения, посвященной 70-летию М.М. Каримовой.-Душанбе, 2007.-С. 60 – 61.

37. Срумова Ф.В. Об одной начально-краевой задаче для линейной системы уравнений Максвелла первого порядка /Ф.В. Срумова // Материалы республиканской научной конференции, посвященной 60-летию образования ТГНУ и 70-летию академика АН РТ Раджабова Н.Р.Душанбе, 2008.-С. 78-79.

38. Срумова Ф.В. Об одной начально-краевой задаче для линейной системы уравнений Максвелла первого порядка /Ф.В. Срумова // Материалы международной конференции “Наука и современное образование, проблемы и перспективы”, посвященной 60-летию ТГНУ.-Душанбе, 2008.-С.30-32.

39. Срумова Ф.В. Об асимптотике энергии, излученной во внешнюю среду случайным источником колебаний / Ф.В. Срумова // Докл. АН Респ. Таджикистан.- 2010.-Т. 53, №1.-С. 25-27.

40. Срумова Ф.В. Вычисление асимптотики энергии для решения волнового уравнения генерации звука в жидкости / Ф.В. Срумова// Докл.

АН Респ. Таджикистан.-2010.-Т. 53, №10.-С. 767-769.




Похожие работы:





Похожие работы:

«КЛОЧКОВА Татьяна Германовна ИЗУЧЕНИЕ ИНФИЦИРОВАННОСТИ ЦИТОМЕГАЛОВИРУСОМ ЧЕЛОВЕКА ТКАНИ ПРЕДСТАТЕЛЬНОЙ ЖЕЛЕЗЫ У БОЛЬНЫХ РАКОМ ПРОСТАТЫ специальность: 14.01.12 - онкология АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата биологических наук Санкт-Петербург 2012 Работа выполнена в Федеральном государственном бюджетном учреждении Российский научный центр радиологии и хирургических технологий Министерства здравоохранения и социального развития Российской Федерации,...»

«) 08.00.05 – ) – 2011 2,, :, :,, : - 25 2012. 13. 800.024.,, : 188300,.,.,.,. 5. : 188300,.,.,.,. 5. 2011. www.gief.ru 800.024..,..,.,, 20.,,.,.,.,,. : 2010. 22%,, 2014. 23,8%, 2016. – 24,8%.,, ( 60 75 ) ( 75 90 ). 2000-. 20%-. ( ) 2007. 24,4% ( – 20%).,.., 2010..., 2009.: 14,6%, – 11,5%, – 11,1%, – 10,3%, – 18,4%. ( 2000. 6,8 1000 9,2 2010...»

«ГЕВОНДЯН АРСЕН СЕРГЕЕВИЧ ОРГАНИЗАЦИОННО-ФУНКЦИОНАЛЬНОЕ УПРАВЛЕНИЕ ПОТЕНЦИАЛОМ ЭНЕРГЕТИЧЕСКИХ КОМПАНИЙ В УСЛОВИЯХ РЕФОРМИРОВАНИЯ ОТРАСЛИ Специальность: 08.00.05 – Экономика и управление народным хозяйством: экономика, организация и управления предприятиями, отраслями, комплексами (промышленность) Автореферат диссертации на соискание ученой степени кандидата экономических наук Ростов-на-Дону – 2012 Диссертация выполнена в Кубанском институте международного предпринимательства и...»

«КОЛОДЯЖНАЯ Вероника Николаевна СЕМАНТИЧЕСКИЕ И ФУНКЦИОНАЛЬНЫЕ ХАРАКТЕРИСТИКИ НАРЕЧИЙ НЕПОЛНОТЫ ДЕЙСТВИЯ ИЛИ ПРИЗНАКА В СОВРЕМЕННОМ АНГЛИЙСКОМ ЯЗЫКЕ Специальность 10.02.04 – германские языки АВТОРЕФЕРАТ диссертации на соискание учной степени кандидата филологических наук Белгород – 2012 Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего профессионального образования Белгородский государственный национальный исследовательский...»

«КАУРОВ АЛЕКСАНДР ВЛАДИМИРОВИЧ ТЕПЛООТДАЧА В ПОЛУСФЕРИЧЕСКИХ ВЫЕМКАХ, ОБТЕКАЕМЫХ ПУЛЬСИРУЮЩИМ ТУРБУЛЕНТНЫМ ПОТОКОМ Специальность: 01.04.14 – Теплофизика и теоретическая теплотехника; 05.07.05. – Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов АВТОРЕФЕРАТ на соискание ученой степени кандидата технических наук Казань 2012 2 Работа выполнена в ФГБОУ ВПО Казанский национальный исследовательский технический университет им. А.Н.Туполева-КАИ (КГТУ им....»

«ЕРМОЛАЕВ Павел Юрьевич Феномен детства в отечественной культуре 20-40-х гг. ХХ века (философско-антропологический анализ) Специальность 09.00.13 Философская антропология, философия культуры АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата философских наук Санкт-Петербург – 2011 Работа выполнена на кафедре философии автономного образовательного учреждения высшего профессионального образования Ленинградский государственный университет имени А.С. Пушкина Научный...»

«Нещадим Михаил Владимирович АЛГЕБРО-АНАЛИТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ УРАВНЕНИЙ МАТЕМАТИЧЕСКОЙ ФИЗИКИ 01.01.02 дифференциальные уравнения, динамические системы и оптимальное управление АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук Новосибирск – 2012 Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте математики им. С.Л.Соболева Сибирского отделения Российской академии наук. Научный консультант :...»

«МАЗЫРИН Владимир Моисеевич ТРАНСФОРМАЦИЯ ВЬЕТНАМСКОЙ ЭКОНОМИКИ В 1986-2010 гг.: ПРОБЛЕМЫ И ПУТИ ИХ РЕШЕНИЯ Специальность 08.00.14 – Мировая экономика Автореферат диссертации на соискание ученой степени доктора экономических наук Москва – 2011 Работа выполнена в Учреждении Российской Академии наук Институт Дальнего Востока. доктор экономических наук, профессор Официальные оппоненты : АНОСОВА Людмила Александровна доктор экономических наук, профессор АВДОКУШИН Евгений Федорович...»

«Ра, а а На аа Ф Е. А. С а а а а а а а Б, а : Ма а М. а.- а...(, 2007). – Е а : ИД У ГЮА, 2008. С. 324 – 327. – 0,3.. Ф Е. А. П а Р ФИЛИМОНОВ а // С а - аЕ А а а. Ма а III М а. а.- а.. (18 а 2008). Ч. 1. Е а : И - УИЭУ П, 2008. – 0,2.. Ф Е. А. С а а - а аа - НАУЧНО-ТЕХНОЛОГИЧЕСКИЙ ПРОГРЕСС аР а а а // С. а.. а.- а.. На - –, В АГРАРНОЙ СФЕРЕ В КОНТЕКСТЕ РАЗВИТИЯ а аа ( 2008.). – М. МГСУ, 2008, С. 332 – 333. – 0,3.. Ф Е. А. Э а а ГЕННО-ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИ а а // С а...»

«ГРИШАКОВ Вячеслав Геннадьевич ОТЕЧЕСТВЕННАЯ ИСТОРИОГРАФИЯ КРЕСТЬЯНСКОГО ДВИЖЕНИЯ В ПОВОЛЖЬЕ В ГОДЫ ГРАЖДАНСКОЙ ВОЙНЫ. Специальность 07.00.09 — Историография, источниковедение и методы исследования Автореферат диссертации на соискание ученой степени кандидата исторических наук Воронеж - 2011 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Пензенский государственный педагогический университет им....»

«БУРАК ПАВЕЛ ИВАНОВИЧ ИНТЕНСИФИКАЦИЯ ЭЛЕКТРОКОНТАКТНОЙ ПРИВАРКИ ЛЕНТ ПРИ ВОССТАНОВЛЕНИИ ДЕТАЛЕЙ Специальность 05.20.03 – Технологии и средства технического обслуживания в сельском хозяйстве АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических наук Москва 2012 1 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Московский государственный агроинженерный университет имени В.П. Горячкина...»

«МАКАРОВА Ирина Сакибжановна РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ: ИСТОРИКО–ТЕОРЕТИЧЕСКИЕ ОСНОВАНИЯ И ПУТИ РАЗВИТИЯ 03.02.08 – экология (биология) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора биологических наук Владимир – 2012 Работа выполнена на кафедре экологии в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых...»

«Антонова Татьяна Степановна ОБОСНОВАНИЕ МЕТОДИКИ РАЗМЕЩЕНИЯ ЛЕСОСЕК И ТРАНСПОРТНОГО ОСВОЕНИЯ ЛЕСОВ ЛЕСОЗАГОТОВИТЕЛЬНОГО ПРЕДПРИЯТИЯ НА БАЗЕ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ 05.21.01 – Технология и машины лесозаготовок и лесного хозяйства Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург – 2012 2 Работа выполнена в государственном образовательном учреждении высшего профессионального образования Санкт-Петербургском государственном...»

«ХАЙДАКИН ПАВЕЛ ВИКТОРОВИЧ УПРАВЛЕНИЕ ТРУДОВЫМ ПОТЕНЦИАЛОМ ПРОФЕССОРСКОПРЕПОДАВАТЕЛЬСКОГО СОСТАВА КАК УСЛОВИЕ ПОВЫШЕНИЯ КОНКУРЕНТОСПОСОБНОСТИ ВУЗА Специальность 08.00.05 – Экономика и управление народным хозяйством (специализация 8 – экономика труда) Автореферат диссертации на соискание ученой степени кандидата экономических наук Москва – 2012 Диссертация выполнена на кафедре Управления персоналом Федерального государственного бюджетного образовательного учреждения высшего...»

«АНТИПИНА ОКСАНА ВИКТОРОВНА ИННОВАЦИОННО-ИНВЕСТИЦИОННОЕ РАЗВИТИЕ ТЕРРИТОРИЙ В СИСТЕМЕ МУНИЦИПАЛЬНОГО УПРАВЛЕНИЯ Специальность: 08.00.05 – Экономика и управление народным хозяйством (управление инновациями) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Иркутск – 2011     Раб бота выпо олнена на кафедре экономи а е ической т теории и финансов ФГБОУ в У ВПО Ир ркутский государс й ственный техничес ский унив верситет Научны руково ый одитель:...»

«Чу пряков Иван Сергеевич ПЕДАГОГИЧЕСКИЕ УСЛОВИЯ ФОРМИРОВАНИЯ ГОТОВНОСТИ БУДУЩИХ УЧИТЕЛЕЙ ТЕХНОЛОГИИ И ПРЕДПРИНИМАТЕЛЬСТВА К ОРГАНИЗАЦИИ ТВОРЧЕСКО-КОНСТРУКТОРСКОЙ ДЕЯТЕЛЬНОСТИ УЧАЩИХСЯ 13.00.08 – теория и методика профессионального образования АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата педагогических наук       Йошкар-Ола – 2012 Работа выполнена на кафедре теории методики технологии и профессионального образования ФГБОУ ВПО Марийский государственный...»

«ПЬЯНОВА Ольга Викторовна ПСИХОЛОГИЧЕСКИЕ ПОКАЗАТЕЛИ СУБЪЕКТИВНЫХ БАРЬЕРОВ ОБЩЕНИЯ У ПОДРОСТКОВ 19.00.01– общая психология, психология личности, история психологии АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата психологических наук Ставрополь – 2012 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Ставропольский государственный университет Научный руководитель : доктор психологических наук,...»

«Колядо Александр Владимирович ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ НЕКОТОРЫХ Н-АЛКАНОВ С ТЕТРАХЛОРМЕТАНОМ 02.00.04 – Физическая химия АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук САМАРА – 2012 г. Работа выполнена в ФГБОУ ВПО Самарский государственный технический университет доктор химических наук, профессор Научный руководитель : Гаркушин Иван Кириллович доктор химических наук, профессор, Самар Официальные оппоненты : ский государственный университет...»

«Абидов Умед Ахмеджанович МЕТОДИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ СТРАТЕГИИ ОБЕСПЕЧЕНИЯ ЭНЕРГЕТИЧЕСКОЙ БЕЗОПАСНОСТИ СТРАНЫ (на материалах Республики Таджикистан) 08.00.05 – Экономика и управление народным хозяйством: экономическая безопасность АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Душанбе-2012 Диссертационная работа выполнена на кафедре Экономика и управление производством Таджикского технического университета имени академика М.С.Осими....»

«буртушкина наталья кимовна оптимизация лечения неопухолевых заболеваний шейки матки 14.01.01 – акушерство и гинекология автореферат диссертации на соискание ученой степени кандидата медицинских наук Иркутск – 2011 Работа выполнена в Государственном бюджетном образовательном учреждении Высшего профессионального образования Иркутский государственный медицинский университет Министерства здравоохранения и социального развития РФ. научный руководитель: доктор медицинских наук,...»

 
2013 www.netess.ru - «Бесплатная библиотека авторефератов кандидатских и докторских диссертаций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.