авторефераты диссертаций БЕСПЛАТНАЯ  БИБЛИОТЕКА

АВТОРЕФЕРАТЫ КАНДИДАТСКИХ, ДОКТОРСКИХ ДИССЕРТАЦИЙ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ


На правах рукописи

Кучеев Юрий Олегович

Полное и неполное “смачивание” границ зерен второй твердой фазой

в сплавах железа и кобальта

Специальность 01.04.07

«Физика конденсированного состояния»

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва – 2012

Работа выполнена на кафедре физической химии ФГАОУ ВПО «Национальный Исследовательский Технологический Университет «МИСиС» и в Лаборатории поверхностей раздела в металлах ИФТТ РАН, г. Черноголовка

Научный руководитель: Доктор физико-математических наук, профессор Б.Б. Страумал (ИФТТ РАН, МИСиС) 1. Доктор физико-математических наук, профессор

Официальные оппоненты:

А.М. Глезер (ЦНИИЧермет) 2. Кандидат физико-математических наук А.Н. Алешин (ИСВЧПЭ РАН)

Ведущая организация: Институт Металлургии и материаловедения имени А.А. Байкова РАН

Защита состоится 31 Мая 2012 г. в 1530 часов на заседании диссертационного совета Д 212.132.08 при НИТУ «МИСиС» по адресу: 119049, г. Москва, Ленинский проспект 4, ауд. Б-607.

С диссертацией можно ознакомиться в библиотеке НИТУ «МИСиС»

Автореферат разослан ” ” апреля 2012 г.

Ученый секретарь диссертационного совета, доктор физико-математических наук, профессор С.И. Мухин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы Структура и морфология фаз значительно влияют на физические, механические и коррозионные свойства поликристаллических материалов. Недавно было обнаружено, что в целом ряде систем при изменении температуры может происходить обратимый переход от неполного к полному смачиванию границ зерен (ГЗ) расплавом или второй твердой фазой. При полном смачивании на границах зерен формируются непрерывные прослойки второй фазы (расплава или второй твердой фазы), которые отделяют зерна первой фазы друг от друга. При неполном смачивании вторая фаза на границах зерен имеет форму отдельных капель (если она жидкая) или частиц (если она твердая). Такие зернограничные превращения обратимы, они сильно изменяют как микроструктуру, так и свойства двухфазных поликристаллических материалов. Как правило, переход от неполного смачивания к полному происходит при повышении температуры. Такие переходы наблюдаются в целом ряде технологически важных систем: в сплавах меди, алюминия, железа, циркония, титана, вольфрама, молибдена и многих других.

Образование термодинамически равновесных прослоек второй фазы в результате зернограничных переходов смачивания изменяет механические свойства материала (может приводить как к сверхпластичности, так и к охрупчиванию), влияет на коррозионную стойкость, диффузионную проницаемость, рекристаллизацию и рост зерен, электрическое сопротивление материала и т.д. Особенно важны в этом смысле недавно обнаруженные зернограничные фазовые переходы «смачивания» второй твердой фазой. В частности, они происходят в таких технологически важных системах, как железо–углерод, алюминий– цинк, алюминий–магний и т.д.

В процессе эксплуатации происходит рост зерен матрицы, а также изменение морфологии зерен второй фазы. В объеме материала образовавшиеся при кристаллизации пластины и стержни второй фазы разбиваются на фрагменты, затем происходит их сфероидизация и коалесценция. На границах зерен матрицы морфология выделений второй фазы определяется соотношением энергий границ зерен и межфазных границ. Если энергия границы зерен выше энергии двух межфазных границ, то формируются непрерывные прослойки второй фазы, разделяющие зерна матрицы. Вторая твердая фаза полностью «смачивает»

границу зерен в матрице. Если энергия границы зерен ниже энергии двух межфазных границ, то на границе формируются и со временем растут изолированные линзовидные частицы. Это означает, что вторая твердая фаза неполностью «смачивает» границу зерен в матрице. Морфология выделений второй фазы на границах зерен может зависеть как от температуры, так и от давления или концентрации легирующих элементов.

Фундаментальные сведения о расположении областей полного и неполного смачивания границ на традиционных объемных фазовых диаграммах можно использовать в прикладных целях для целенаправленного изменения свойств двухфазных материалов. Такие данные в настоящее время начинают использовать для улучшения технологий жидкофазного спекания сплавов вольфрам-медь, сплавов карбида вольфрама с кобальтом, магнитожестких сплавов на основе системы неодим-железо-бор, разнообразных оксидных и нитридных керамик, а также в производстве малоуглеродистых феррито-перлитных сталей для трубопроводов и заэвтектоидных сталей с высоким содержание углерода. Этим определяется актуальность проблемы исследования переходов между полным и неполным смачиванием границ зерен, а также влияния, которое оказывают на эти явления другие фазовые превращения в зернах матрицы и в самой смачивающей фазе.

Цель работы Целью настоящей работы являлось изучение влияния перехода из ферромагнитного в парамагнитное состояние на переход между полным и неполным «смачиванием» границ зерен, что позволяет дополнить классическое представление о фазовых переходах смачивания, разработанное Каном.

Для достижения поставленной цели предполагалось:

- Определить область температур (Twmin, Twmax), в которой происходит переход от неполного «смачивания» к полному на границах зерен с разной энергией в поликристаллах систем Nd–Fe–B, Zr–Nb, Co–Cu, Fe–Cr, Fe–C;

- Установить температурную зависимость доли «смоченных» границ зерен в поликристаллах систем Nd–Fe–B, Zr–Nb, Co–Cu, Fe–Cr, Fe–C;

- Проанализировать влияние перехода из ферромагнитного в парамагнитное состояние на полное и неполное «смачивание» границ зерен;

- Разработать модель, которая объяснит наблюдаемые температурные зависимости контактного угла на границах и влияние перехода из ферромагнитного в парамагнитное состояние на переход между полным и неполным «смачиванием» границ зерен.

Научная новизна работы Основная научная новизна работы заключается в следующем:

- определены температуры начала и конца перехода от неполного «смачивания» к полному в трехфазной области [Fe14Nd2B ()+Nd2Fe7B6 () + жидкая фаза, обогащенная Nd] диаграммы Nd–Fe–B и двухфазных областях диаграмм Zr–Nb, Co–Cu, Fe–Cr, Fe–C;

- проведен количественный анализ переходов от неполного «смачивания» границ зерен к полному в исследуемых сплавах, и на основе полученных данных построены температурные зависимости доли полностью «смоченных» границ зерен, а также контактного угла, образованного границей зерен и «смачивющей» фазой;

- проведена проверка предложенной модели влияния перехода из ферромагнитного в парамагнитное состояние на температурную зависимость контактного угла;

- установлено влияние возврата и рекристаллизации на «смачивание» границ зерен в феррите цементитом, а также влияние легирующих элементов на долю границ в феррите, полностью «смоченных» аустенитом.

Научная и практическая значимость работы Научная ценность результатов, представленных в диссертации, состоит, прежде всего, в том, что фазовые превращения в зернах матрицы и в самой «смачивающей» фазе оказывают существенное влияние на переходы от неполного «смачивания» границ зерен к полному, и – таким образом – на физические и механические свойства материалов. В работе впервые систематически изучено влияние перехода из ферромагнитного в парамагнитное состояние в матрице на переход между полным и неполным «смачиванием» границ зерен.

Практическая значимость работы связана с широким применением исследованных сплавов в промышленности. Так, сплавы неодим-железо-бор с конца 1980-х годов являются основными магнитотвердыми материалами с наиболее высокой магнитной энергией. Сплавы цирконий-ниобий широко используются в современном реакторном машиностроении.

Ферритные высокохромистые стали широко применяются в энергоблоках с сверхкитическими параметрами пара, а исследованный сплав по составу совпадает с коммерческим сплавом Crofer 22H компании ThyssenKrupp VDM (основное назначение которого – контакты в плоских твердооксидных топливных элементах). Материал образцов Fe–С соответствует маркам 17ГБ1, 09Г1Б, 04Г2Б и близок по составу к сталям магистральных труб нефте- и газопроводов. Таким образом, полученные результаты можно использовать для модернизации термомеханической обработки исследованных сплавов.

Основные положения, выносимые на защиту На защиту выносятся:

- Установленный факт, что в системе Nd–Fe–B с повышением температуры происходит переход от неполного смачивания ГЗ расплавом к полному;

- Установленный факт, что в системах Zr–Nb, Co–Cu, Fe–Cr и Fe–C происходит переход от неполного «смачивания» ГЗ второй твердой фазой к полному;

- Установленный факт, что переход от неполного «смачивания» к полному может происходить как с повышением температуры, так и с её понижением, в зависимости от исследуемой системы;

- Установленный факт, что легирование малоуглеродистых сталей приводит к повышению доли ГЗ феррита, полностью «смоченных» аустенитом;

- Установленный факт, что в сплавах Fe–Cr и Co–Cu переход зерен матрицы из парамагнитного состояния в ферромагнитное затрудняет «смачивание» границ зерен;

- Гипотеза о существовании неклассической модели фазовых переходов «смачивания» границ зерен второй твердой фазой;

- Модель, объясняющая влияние ферромагнетизма на «смачивание» границ зерен второй твердой фазой.

Апробация работы Основные положения диссертации докладывались и обсуждались на следующих международных и российских конференциях:

1. Международная конференция International symposium "Advanced materials and technologies", Витебск, Беларусь, 2. 5th international conference "Diffusion in Solids and Liquids" (DSL-2009), Рим, Италия, 3. International Conference “Thermodynamics and Transport Kinetics of Nanostructured Materials” (TTk), Нордкирхен, Германия, 4. 48th international conference "Actual strength problem", Тольятти, 5. Indian Science Congress, Trivandrum, Индия, 6. International conference on Grain Boundary Diffusion, Stresses and Segregation (DSSМосква, 7. 49th international conference "Actual strength problem", Киев, 8. XIII International Conference on Intergranular and Interphase Boundaries in Materials (iib 2010), Сима, Миэ, Япония, 9. 6th international conference "Phase transformations and crystal strength", Черноголовка, 10. 51st international conference "Actual strength problem", Харьков, 11. Научная сессия МИФИ «Функциональные ультрадисперсные (нано-) материалы в атомной отрасли», Москва, Структура и объём работы Диссертация состоит из введения, 5 глав и выводов и изложена на 131 странице, содержит 43 рисунка, 6 таблиц и список использованных источников из 171 наименования.

Личный вклад автора Автор лично осуществлял лабораторные эксперименты, результаты которых изложены в диссертации, исследовал микроструктуры методом оптической, сканирующей и просвечивающей электронной микроскопии, выполнял обработку и анализ полученных результатов; выдвинул гипотезу, описывающую переходы «смачивания» границ второй твердой фазой и влияние на них фазовых превращений в матрице. Основные положения диссертационной работы сформулированы автором лично.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, изложены цели и задачи диссертационной работы, показаны её научная новизна и практическая значимость.

Первая глава диссертации, «Аналитический обзор литературы», дает краткое описание известных к настоящему времени теоретических и экспериментальных работ по изучению фазовых переходов от неполного смачивания внутренних границ раздела к полному.

Рассмотрено классическое представление о фазовых переходах смачивания на границах зерен. Предложен также метод выбора материалов и способов, позволяющих наблюдать фазовый переход смачивания на границах зерен.

В целом ряде систем могут происходить так называемые зернограничные фазовые переходы смачивания. В случае полного «смачивания» на границах зерен образуются сплошные прослойки второй фазы (расплава или второй твердой фазы), которые отделяют зерна первой фазы друг от друга. При неполном «смачивании» вторая фаза на границах зерен имеет форму отдельных капель (если она жидкая) или частиц (если она твердая). Переход от неполного к полному «смачиванию» происходит во всех системах, в которых температурные зависимости энергий ГЗ и межфазных границ пересекаются. В частности, фазовый переход смачивания ГЗ происходит при температуре Tw, при которой энергия границы зерен GB становится равной энергии двух межфазных границ раздела твердая фаза/жидкость 2SL. Выше температуры Tw границы зерен заменяются прослойками жидкой фазы. Таким образом, в двухфазной области объемной фазовой диаграммы появляются коноды зернограничных переходов. Например, в двухфазной области (Al)+L фазовых диаграмм Al–Zn и Al–Mg происходит переход смачивания ГЗ Al/Al жидкой фазой, содержащей Zn. Так, в поликристаллах Al–Mg не существует полностью смоченных ГЗ ниже Twmin=440 °C. Twmin в этом случае является температурой полного смачивания для ГЗ с максимальной энергией GBmax. Выше Twmax=565 °C все высокоугловые ГЗ в (Al) полностью смочены жидкой фазой, содержащей магний. Температура Twmax в этом случае является температурой полного смачивания для границ зерен с минимальной энергией GBmin.

Границы зерен также могут быть «смочены» второй твердой фазой. Это явление состоит в том, что в двухфазных областях фазовых диаграмм вторая твердая фаза может располагаться по границам зерен первой либо в виде сплошных прослоек (полное «смачивание» ГЗ), либо в виде отдельных линзовидных частиц (неполное «смачивание» ГЗ). Впервые обратимый переход от неполного «смачивания» второй твердой фазой к полному наблюдался в системе Zn–Al, а затем – в сплавах Al–Mg.

Морфология второй фазы определяется не только соотношением энергий границ зерен и межфазных границ, но и может зависеть как от температуры, так и от давления или концентрации легирующих элементов, влияния магнитных переходов.

Во второй главе, «Воздействие ферромагнетизма на процессы, протекающие на границах зерен», подробно описано влияние магнитного перехода на диффузионную проницаемость Zn в сплавах Fe–Si, а также предложена гипотеза о существовании неклассических моделей фазовых переходов «смачивания», когда переход от неполного «смачивания»

к полному происходит не при повышении, а при понижениии температуры.

В первой части главы описано влияние ферромагнетизма на зернограничную диффузию Zn в сплавах Fe–Si. При исследовании проникновения цинка по границам зерен в бикристаллах Fe–Si наблюдалось необычное явление – аномально высокая диффузионная проницаемость границ, которая при некоторой концентрации цинка скачкообразно уменьшается. Это связано с появлением на ГЗ в Fe–Si тонкой жидкоподобной прослойки, обогащенной цинком. В частности, в сплавах Fe–5 ат.% Si ниже температуры Кюри тонкая жидкоподобная прослойка, обогащенная цинком, постепенно исчезает. Это исчезновение объясняется переходом из парамагнитного в ферромагнитное состояние в объеме, что приводит к неравномерному изменению объемной свободной энергии.

Во второй части второй главы выдвинута гипотеза о существовании неклассических моделей переходов от неполного к полному «смачиванию» границ зерен, когда доля полностью «смоченных» ГЗ не падает, а растет с понижением температуры. Эта гипотеза позволяет объяснить полученные ранее результаты для «смачивания» ГЗ в системе Al–Zn, а также качественно объясняет влияние перехода из парамагнитного состояния в ферромагнитное состояние в объеме материала на температурную зависимость доли полностью «смоченных» границ зерен.

Рассмотрен переход от неполного к полному «смачиванию» ГЗ в случае, когда «смачивающая» фаза твердая. Он происходит, когда энергия 2 двух границ раздела фаз и меньше энергии границы зерен GB при температурах ниже температуры перехода (Рис. 1).

В таком случае переход от неполного (контактный угол >0) к полному (=0) «смачиванию» границ зерен второй твердой фазой происходит при понижении температуры (см. Рис. 1.б), а не при повышении, как было рассмотрено Каном в классическом представлении. В этом случае при низких температурах граница зерен / не может существовать в контакте с фазой при низких температурах, и доля «смоченных» границ уменьшается с увеличением температуры отжига (см. Рис. 1.в). Во время отжига выше температуры перехода Tw сплошные прослойки фазы на границах зерен термодинамически неустойчивы.

Они должны разбиваться на цепочки частиц или образовывать включения на тройных стыках.

Рассмотрим теперь влияние перехода из парамагнитного состояния в ферромагнитное состояние в объеме на предложенную модель температурной зависимости энергий ГЗ и удвоенной межфазной энергии. Если предположить, что в определенной системе температура Кюри Tc перехода из ферромагнитного в парамагнитное состояние для зерен лежит выше температуры зернограничного «смачивания» фазой (см. Рис. 1.г, д), а также предположить, что переход из парамагнитного состояния в ферромагнитное понижает «смачиваемость» границ зерен, то можно ожидать следующие особенности на зависимостях доли полностью «смоченных» границ и контактного угла. При понижении температуры контактный угол будет сначала понижаться, как и в случае отсутствия магнитного перехода (см. Рис. 1.е). При понижении температуры отжига с началом магнитного перехода, зависимость контактного угла начнет отклоняться от теоретической в силу магнитного взаимодействия соседних зерен, что приведет к замедлению уменьшения контактного угла и понижению доли «смоченных» границ (см. Рис. 1.е, ж). Дальнейшее понижение температуры отжига увеличит магнитное взаимодействие, и при определенной температуре можно ожидать появление минимума на зависимости контактного угла и максимума на температурной зависимости доли «смоченных» границ (см. Рис. 1.е, ж). Далее на зависимости контактного угла и доли «смоченных» границ должен появиться пологий участок, который будет свидетельствовать о завершении магнитного перехода и прохождении температуры зернограничного перехода «смачивания» Tw. Для экспериментальной проверки данной гипотезы были выбраны системы с переходом из парамагнитного состояния в ферромагнитное в двухфазных областях фазовых диаграмм.

В третьей главе диссертации, «Наблюдение классической модели монотонной зависимости доли «смоченных» гранц», изложены и проанализированы экспериментальные данные, подтверждающие классическую модель фазовых переходов смачивания, наблюдаемую в трехфазной области [Fe14Nd2B ()+Nd2Fe7B6 ()+жидкая фаза, обогащенная Nd] фазовой диаграммы Nd–Fe–B и двухфазной области (Zr+Zr, Nb) фазовой диаграммы Zr–Nb.

В первой части третьей главы приводятся экспериментальные результаты о фазовых переходах смачивания в трехфазной области [Fe14Nd2B ()+Nd2Fe7B6 ()+жидкая фаза, Энергия границ Контактный угол Доля смоченных ГЗ Рис. 1 – Схема зависимостей: энергии границ, контактного угла, доли смоченных границ в сплавах без магнитного перехода (а, б, в) и с магнитным переходом (г, д, е, ж,) обогащенная Nd] фазовой диаграммы Nd–Fe–B. Также в этом разделе представлены результаты, полученные по анализу литературных данных по образцам, полученным жидкофазным спеканием.

Установлено, что в трехфазной области [Fe14Nd2B ()+Nd2Fe7B6 ()+жидкая фаза, обогащенная Nd] фазовой диаграммы Nd–Fe–B обогащенная неодимом фаза может полностью либо частично смачивать границы зерен Fe14Nd2B (см. Рис. 2).

Рис. 2 – Микрофотографии (СЭМ) сплава Fe–12,3 ат.% Nd– 7,6 ат.% B.

Доля полностью смоченных границ зерен Fe14Nd2B увеличивается с 10 % (при 700 °C) до почти 100 % (при 1100 °C). Оценочные температуры начала и конца перехода от неполного к полному смачиванию границ зерен расплавом составили Tws=(690±10) °C и Twf=(1150±10) °C, соответственно (см. Рис. 3).

Рис. 3 – Температурная зависимость доли смоченных ГЗ Fe14Nd2B. Толстая линия, большие квадраты – данная работа. Маленькие символы – анализ литературных данных.

Температуры начала и конца перехода смачивания: Tws=(690±10) °C и Twf =(1150±10) °C Было отмечено, что обогащенная неодимом фаза между зернами Fe14Nd2B и на тройных стыках содержит мелкодисперсные включения ферромагнитной -фазы (Nd2Fe7B6) (см. Рис. 2). В соответствии с опубликованными данными, -фаза является ферромагнитной. Такие ферромагнитные «мостики» фазы могут пагубно сказываться на магнитных свойствах. Во время производства постоянных магнитов на основе FeNdB желательно исключить такие ферромагнитные «мостики» в парамагнитных межзеренных слоях. С другой стороны, для получения магнитного разделения немагнитными прослойками, толщина этих прослоек должна быть порядка ширины стенок Блоха между магнитными доменами (около 5 нм). Можно предположить, что разделения магнитных зерен Fe14Nd2B возможно достичь не только при помощи смачивания слоями макроскопической толщины (от нескольких мкм до 100 нм) объемной фазы, но и относительно тонкими слоями посредством эффекта предсмачивания/предплавления.

Во второй части третьей главы представлены результаты экспериментального исследования перехода от неполного к полному «смачиванию» в двухфазной области (Zr + Zr, Nb) фазовой диаграммы Zr–Nb. Полученные данные свидетельствуют о том, что в двухфазной области (Zr+Zr, Nb) фазовой диаграммы Zr–Nb фаза Zr может частично либо полностью «смачивать» границы зерен (Zr, Nb)/(Zr, Nb) (см. Рис. 4). В исследованных образцах не наблюдались границы зерен Zr/Zr, полностью «смоченные» прослойками фазы (Zr, Nb).

Рис. 4 – Микрофотографии (СЭМ). Образцы: (a) Zr–8 вес.% Nb, отжиг 660 °C.

(b) Zr–8 вес.% Nb, отжиг 690 °C. (c) Zr–4 вес.% Nb отжиг 720 °C По полученным данным проведен количественный анализ и построена температурная зависимость доли «смоченных» границ (см. Рис. 5). Установлено, что доля полностью «смоченных» границ зерен (Zr, Nb)/(Zr, Nb) увеличивается с 10 % (660 °C) до 60 % вблизи верхней границы двухфазной области (Zr+Zr, Nb) фазовой диаграммы Zr–Nb (850 °C). Температура начала перехода от неполного «смачивания» к полному границ зерен (Zr, Nb)/(Zr, Nb) фазой Zr оценивается как Tws=(630±10) °C.

Рис. 5 – Температурная зависимость доли ГЗ (Zr, Nb)/(Zr, Nb), «смоченных» фазой Zr.

Tws=630 °C - температура начала перехода «смачивания» ГЗ (Zr, Nb)/(Zr, Nb) второй твердой фазой (Zr). Tmt=(620±10) °C - Температура монотектоидного превращения В четвертой главе, «Наблюдение отклонения от классической модели «смачивания» границ зерен второй твердой фазой в системе Co–Cu. Связь с магнитным превращением», приводятся данные экспериментального исследования перехода от неполного к полному «смачиванию» границ зерен второй твердой фазой в системе Co–Cu, а также подробно описывается влияние перехода в объеме из парамагнитного состояния в ферромагнитное на «смачиваемость» границ зерен на основе анализа избыточной свободной энергии «смачивающей» прослойки.

В первой части четвертой главы изложены и проанализированы данные о переходах от неполного к полному «смачиванию» границ зерен второй твердой фазой в двухфазной области Co+Cu диаграммы Co–Cu. По результатам данных анализа установлено, что для сплавов системы Co–Cu переход от неполного к полному «смачиванию» границ зерен второй твердой фазой происходит в сплавах на основе кобальта и не происходит в сплавах на основе меди.

На рисунке 6 приведены типичные микрофотографии сплавов системы Co–Cu. Видны темно-серые зерна фазы на основе Co (матрица в сплаве, обогащенном Co и частицы в сплаве, обогащенном Cu). Светло-серые зерна твердого раствора на основе Cu (матрица в сплавах, обогащенных Cu, и включения в сплавах, обогащенных твердым раствором на основе Co). В случае частично «смоченных» ГЗ в кобальте измерялся контактный угол между ГЗ в кобальте и твердым раствором на основе меди (Cu).

(a) Co–13,6 вес.% Cu (1040 °C, 1460 ч); (b) Cu–4,9 вес.% Co (960 °C, 1600 ч), (c) фасетированная частица (Co) в объеме сплава Cu–4,9 вес.% Co (1040 °C, 1460 ч) На рисунке 7 представлена температурная зависимость доли ГЗ в кобальте, полностью «смоченных» второй твердой фазой (Cu) (темные кружки, тонкая линия) и зависимость среднего контактного угла между ГЗ в кобальте и фазой (Cu) (светлые кружки, толстая линия). Был определен именно средний контактный угол, т.к. поликристалл содержит ГЗ с различной энергией (в зависимости от наклона и разориентации). Аналогичное заключение справедливо для энергии межфазных границ кобальт/медь. При температуре 885 °C в структуре присутствуют только ГЗ в кобальте, частично «смоченные» второй твердой фазой (Cu). При 985 °C в кобальте появляются отдельные ГЗ, полностью «смоченные» второй твердой фазой (Cu). Это означает, что температура начала фазового перехода «смачивания» ГЗ в кобальте второй твердой фазой (Cu) может быть определена как Twss=(970±10) °C. Выше 985 °C доля полностью «смоченных» ГЗ в кобальте возрастает с увеличением температуры и достигает максимального значения около 15 % при 1040 °C.

Выше 1040 °C доля полностью «смоченных» ГЗ в кобальте уменьшается с увеличением температуры. При 1065 °C лишь около 1 % ГЗ в кобальте полностью «смочены» второй твердой фазой (Cu). При 1085 °C в поликристалле Co–13,6 вес.% Cu не наблюдались полностью «смоченные» ГЗ в кобальте. Это означает, что температура конца фазового перехода «смачивания» ГЗ в кобальте второй твердой фазой меди (Cu) оценивается как Twsf=(1075±5) °C.

В результате, две новые зернограничные коноды Twss=970 °C и Twsf=1075 °C появляются в двухфазной области объемной фазовой диаграммы Co–Cu (см. Рис. 8). На рисунке 8 толстыми линиями обозначены объемные фазовые переходы. Кружками обозначены температуры отжигов исследованных образов. Треугольники показывают измеренную концентрацию в твердых растворах (Co) и (Cu). Тонкие линии при Twss=970 °C и Twsf=1075 °C показывают коноды начала и конца фазового перехода «смачивания» ГЗ в кобальте второй твердой фазой (Cu).

Контактный угол (см. Рис. 7) сначала уменьшается с увеличением температуры, достигая минимального значения 6±2 при 1040 °C. Выше 1040 °C средний контактный угол возрастает с увеличением температуры, достигая значения 22±2 при 1085 °C. При Рис. 7 – Температурная зависимость доли полностью «смоченных» ГЗ в кобальте второй твердой фазой (Cu) (темные кружки, тонкая линия) и среднего контактного угла между ГЗ кобальте и фазой (Cu) (светлые кружки, толстая линия) Temperature, °C 1040 °C контактный угол достигает минимума, а доля полностью «смоченных» ГЗ в кобальте становится минимальной.

Таким образом, в данной диссертационной работе наблюдается повышение доли ГЗ в кобальте, полностью «смоченных» второй твердой фазой (Cu) при понижении температуры в парамагнитном состоянии (т.е. выше температуры Кюри). Однако, ниже температуры Кюри, когда кобальт становится ферромагнитным, доля ГЗ в кобальте, полностью «смоченных» второй твердой фазой (Cu) начинает понижаться при дальнейшем понижении температуры и продолжает понижаться одновременно с повышением намагниченности кобальта. В работе Рабкина с сотрудниками было показано, что ниже температуры Кюри между ферромагнитными зернами, разделенными «смачивающей» диамагнитной или парамагнитной фазой, появляется дополнительное притяжение. Это притяжение увеличивается с понижением температуры в соответствии с законом Кюри-Вейса и может нарушить условия полного «смачивания» ГЗ. Наиболее вероятно, что этот эффект наблюдается и в случае «смачивании» фазой Cu границ зерен в кобальте в системе Co–Cu.

Во второй части четвертой главы проведен анализ влияния ферромагнетизма на переход от неполного к полному смачиванию ГЗ.

Анализ явления смачивания удобно проводить, рассматривая избыточную свободную энергию смачивающей прослойки :

где l – толщина смачивающей прослойки, g – избыточная свободная энергия смачивающей фазы в однофазной области существования твердого раствора, SL– энергия поверхности раздела "кристалл/смачивающая фаза", а V(l) описывает взаимодействие поверхностей раздела "кристалл/смачивающая фаза".

Под полным смачиванием понимают ситуацию, когда при приближении к линии сосуществования фаз со стороны однофазной области (g стремится при этом к нулю) толщина смачивающей прослойки l обращается в бесконечность. Поскольку равновесная толщина смачивающей прослойки определяется минимизацией по l, то полное смачивание может наблюдаться лишь в том случае, когда выполняются два условия:







Похожие работы:

«Антонова Татьяна Степановна ОБОСНОВАНИЕ МЕТОДИКИ РАЗМЕЩЕНИЯ ЛЕСОСЕК И ТРАНСПОРТНОГО ОСВОЕНИЯ ЛЕСОВ ЛЕСОЗАГОТОВИТЕЛЬНОГО ПРЕДПРИЯТИЯ НА БАЗЕ ГЕОИНФОРМАЦИОННЫХ СИСТЕМ 05.21.01 – Технология и машины лесозаготовок и лесного хозяйства Автореферат диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург – 2012 2 Работа выполнена в государственном образовательном учреждении высшего профессионального образования Санкт-Петербургском государственном...»

«Мельник Алексей Юрьевич Профессиональная и социальная адаптация молодежи в условиях современного рынка труда Специальность 08.00.05 – экономика и управление народным хозяйством (экономика труда) Автореферат диссертации на соискание ученой степени кандидата экономических наук Москва - 2012 Работа выполнена в Федеральном государственном бюджетном учреждении Научно-исследовательский институт труда и социального страхования Министерства здравоохранения и социального развития...»

«Пашкус Вадим Юрьевич Конкурентоспособность учреждений общественного сектора в новых экономических условиях (на примере вузов) Специальность: 08.00.05 – Экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями, комплексами: сфера услуг) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора экономических наук Санкт-Петербург 2012 Работа выполнена на кафедре экономической теории...»

«АЛФИМОВА Анастасия Сергеевна МЕТОДИКА ПРЕПОДАВАНИЯ ЭЛЕКТИВНОГО КУРСА ЭЛЕМЕНТЫ ДИСКРЕТНОЙ МАТЕМАТИКИ С ИСПОЛЬЗОВАНИЕМ ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ ДЛЯ УЧАЩИХСЯ ЕСТЕСТВЕННО-МАТЕМАТИЧЕСКОГО ПРОФИЛЯ ОБУЧЕНИЯ Специальность 13.00.02 – теория и методика обучения и воспитания (математика) АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата педагогических наук Москва - 2012 Работа выполнена на кафедре теории и методики обучения математике математического...»

«Шкляр Татьяна Фридриховна КОНЦЕПЦИЯ МЕХАНОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ В МИОКАРДЕ НА ОСНОВЕ ФИЗИКОХИМИЧЕСКОЙ ПРИРОДЫ ЦИТОСКЕЛЕТА 03.03.01 – физиология АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора биологических наук Челябинск – 2012 2 Работа выполнена в Центральной научно-исследовательской лаборатории ГБОУ ВПО Уральская государственная медицинская академия Министерства здравоохранения и социального развития Российской Федерации. Научный консультант : Цывьян...»

«Тильзо Вадим Викторович Совершенствование процесса производства фрикционных накладок применением СВЧ диэлектрического нагрева непосредственно в пресс-форме Специальность 05.17.08 – Процессы и аппараты химических технологий Автореферат диссертации на соискание ученой степени кандидата технических наук Бийск – 2012 Работа выполнена в Бийском технологическом институте (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального...»

«ПУЛИКОВ Петр Георгиевич ИССЛЕДОВАНИЕ И РАЗРАБОТКА ЭЛЕМЕНТОВ СИСТЕМ НЕПРЕРЫВНОГО КОНТРОЛЯ ИЗОЛЯЦИИ ТРАНСФОРМАТОРОВ ВЫСШИХ КЛАССОВ НАПРЯЖЕНИЯ Специальность 05.14.12 – Техника высоких напряжений АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Санкт-Петербург – 2011 Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Санкт-Петербургский государственный политехнический университет...»

«НА ПРАВАХ РУКОПИСИ Юршин Алексей Александрович КОЛОНИАЛЬНЫЙ ВОПРОС И МИЛИТАРИЗМ В ОЦЕНКАХ ГЕРМАНСКОЙ СОЦИАЛ-ДЕМОКРАТИИ (1890-1914гг.) Специальность 07.00.03 – Всеобщая история (новая и новейшая история) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата исторических наук Воронеж – 2012 2 Работа выполнена в ФГБОУ ВПО Воронежский государственный университет доктор исторических наук, профессор, завеНаучный руководитель: дующий кафедрой истории средних веков и зарубежных славянских...»

«РОШКО Галина Михайловна РАЗВИТИЕ СЕЛЬСКОГО ПРЕДПРИНИМАТЕЛЬСТВА С УЧЕТОМ ПРИРОДНО-КЛИМАТИЧЕСКИХ И ХОЗЯЙСТВЕННЫХ РИСКОВ (на материалах Тюменской области) Специальность 08.00.05 – Экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями, комплексами – АПК и сельское хозяйство) Автореферат диссертации на соискание ученой степени кандидата экономических наук Челябинск – 2011 Работа выполнена на кафедре Агробизнес ФГБОУ ВПО...»

«Паникова Елена Сергеевна Иоганн Фридрих Рейхардт (1752–1814) и его произведения на тексты И.В. Гте Специальность 17.00.02 – музыкальное искусство Автореферат диссертации на соискание ученой степени кандидата искусствоведения Москва – 2012 Работа выполнена на кафедре истории зарубежной музыки Московской государственной консерватории имени П.И. Чайковского. Научный руководитель : доктор искусствоведения Царева Екатерина Михайловна, профессор кафедры истории зарубежной музыки...»

«DRACOCEPHALUM L.) 06.01.01 – 17.04.2012 60 90 1/16. 1,5.. 100. 12/04/11 Dracocephalum L.) ( 8. –.-., 2008. –. 36-39..., 1987;.., 2003)..., 2... Nepeta ( ) Dracocephalum ( )- //. - / 9. –.-., 2008. –. 49-50.,.. 3. Dracocephalum moldavica L.) // -, /.. 15. –.-., 2009. –. 56-60.. 5. - (Dracocephalum L.) (Dracocephalum L.) // Dracocephalum moldavica L.) // Dracocephalum L. // ; /...–.- –., 2007. – C. 3-7. ;.., 9...,..,. – //.. – /.,.. –.-.,...»

«Климов Валентин Вячеславович МОДЕЛИ, АЛГОРИТМЫ И ПРОГРАММНЫЕ СРЕДСТВА ПОИСКА И КОМПОЗИЦИИ ВЕБ-СЕРВИСОВ С ИСПОЛЬЗОВАНИЕМ СЕМАНТИЧЕСКИХ ОПИСАНИЙ 05.13.11 – математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей. АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Автор: Москва – 2012 Работа выполнена в Национальном исследовательском ядерном университете МИФИ. Научный руководитель : доктор технических наук,...»

«: 05.26.03 –, ) – 2012 :, :,,,,, - Di, Vi qi).,,,, - - ( ).,.,, -., -,. : - - -, ; - - ; - - ; - -, -.. -, (P ). : 1. - ; 2. aj D0j,,,, > 0,95; 3. ( V0 j ) - :, ; 4., - (t ) -, ; 5. -. - ;, - 10-15 %. http://ipb.mos.ru/ttb/2010-5/2010-5.html. 2011. – 12. –. 32-41. 7. Kholshevnikov, V.V. Pre-school and school children building evacuation/ V.V. Kholshevnikov, D.A. Samoshin, A.P. Parfenenko// Proceedings of the Fourth International Symposium on Human...»

«БОЛОТОВА АЛЕНА ИВАНОВНА РАБОЧАЯ ТЕТРАДЬ КАК СРЕДСТВО РАЗВИТИЯ ПОЗНАВАТЕЛЬНОЙ САМОСТОЯТЕЛЬНОСТИ ПРИ ОБУЧЕНИИ МАТЕМАТИКЕ МЛАДШИХ ШКОЛЬНИКОВ Специальность 13.00.02 – теория и методика обучения и воспитания (математика) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата педагогических наук Москва – 2012 Работа выполнена на кафедре естественнонаучных дисциплин и методики их преподавания в начальной школе Государственного бюджетного образовательного учреждения высшего...»

«Абидов Умед Ахмеджанович МЕТОДИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ СТРАТЕГИИ ОБЕСПЕЧЕНИЯ ЭНЕРГЕТИЧЕСКОЙ БЕЗОПАСНОСТИ СТРАНЫ (на материалах Республики Таджикистан) 08.00.05 – Экономика и управление народным хозяйством: экономическая безопасность АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Душанбе-2012 Диссертационная работа выполнена на кафедре Экономика и управление производством Таджикского технического университета имени академика М.С.Осими....»

«ТИМОФЕЕВ ПАВЕЛ АНАТОЛЬЕВИЧ МОДЕЛИРОВАНИЕ БИЗНЕС-ПРОЦЕССОВ И АВТОМАТИЗАЦИЯ ФОРМИРОВАНИЯ ОРГАНИЗАЦИОННЫХ СТРУКТУР В СИСТЕМЕ ПОДДЕРЖКИ УПРАВЛЕНЧЕСКОЙ ДЕЯТЕЛЬНОСТИ ПРОМЫШЛЕННЫХ ОБЪЕДИНЕНИЙ Специальность 05.13.06 – Автоматизация и управление технологическими процессами и производствами (промышленность) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора технических наук Москва - 2012 2 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении...»

«Комиссаров Артем Александрович ФОРМИРОВАНИЕ ОБЛИКА РАЗВЕДЫВАТЕЛЬНОГО БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА В УСЛОВИЯХ ЗАДАННЫХ СТОИМОСТНЫХ ОГРАНИЧЕНИЙ 05.13.01 – Системный анализ, управление и обработка информации (Авиационная и ракетно-космическая техника) АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата технических наук Москва – 2012 Работа выполнена на кафедре 704 Информационно-управляющие комплексы Московского авиационного института (национального...»

«Калаев Михаил Павлович Многофункциональный прибор для исследования показателей деградации оптических элементов космического аппарата в условиях воздействия потоков микрометеороидов и космического мусора 01.04.01 – Приборы и методы экспериментальной физики Автореферат диссертации на соискание ученой степени кандидата технических наук Самара - 2012 Работа выполнена на кафедре радиотехники и медицинских диагностических систем федерального государственного бюджетного...»

«Колядо Александр Владимирович ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМАХ НЕКОТОРЫХ Н-АЛКАНОВ С ТЕТРАХЛОРМЕТАНОМ 02.00.04 – Физическая химия АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук САМАРА – 2012 г. Работа выполнена в ФГБОУ ВПО Самарский государственный технический университет доктор химических наук, профессор Научный руководитель : Гаркушин Иван Кириллович доктор химических наук, профессор, Самар Официальные оппоненты : ский государственный университет...»

«) 08.00.05 – ) – 2011 2,, :, :,, : - 25 2012. 13. 800.024.,, : 188300,.,.,.,. 5. : 188300,.,.,.,. 5. 2011. www.gief.ru 800.024..,..,.,, 20.,,.,.,.,,. : 2010. 22%,, 2014. 23,8%, 2016. – 24,8%.,, ( 60 75 ) ( 75 90 ). 2000-. 20%-. ( ) 2007. 24,4% ( – 20%).,.., 2010..., 2009.: 14,6%, – 11,5%, – 11,1%, – 10,3%, – 18,4%. ( 2000. 6,8 1000 9,2 2010...»

 
2013 www.netess.ru - «Бесплатная библиотека авторефератов кандидатских и докторских диссертаций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.