Транспорт и распределение жидких углеводородов в выщелоченном черноземе
0-734577На правах рукописи
СМИРНОВА Елена Васильевна ТРАНСПОРТ И РАСПРЕДЕЛЕНИЕ ЖИДКИХ УГЛЕВОДОРОДОВ В ВЫЩЕЛОЧЕННОМ ЧЕРНОЗЕМЕ 03.00.16 - экология
Автореферат диссертации на соискание ученой степени кандидата биологических наук
Казань - 2003
Работа выполнена в научно-исследовательской лаборатории почвенно растительных систем и атмосферы и на кафедре моделирования экосистем Казанского государственного университета им. В.И. Ульянова-Ленина.
Научный консультант:
доктор биологических наук И.П. Бреус Научный консультант:
доктор физико-математических наук, профессор А.В. Костерин
Официальные оппоненты:
доктор биологических наук, профессор Л.О. Карпачевский (Факультет почвоведения МГУ) кандидат биологических наук, доцент СЮ. Селивановская (Экологический факультет КГУ) Ведущее учреждение - Казанская государственная сельскохозяйственная академия
Защита диссертации состоится " 3 " июня 2003 г.
в 14 час. 00 мин. на заседании диссертационного совета Д 212.081.19 при Казанском государственном университете по адресу:
420008, г. Казань, ул. Кремлевская, 18.
С диссертацией можно ознакомиться в библиотеке Казанского госу дарственного университета по адресу: г. Казань, ул. Кремлевская, 18.
Автореферат разослан "30" апреля 2003 г.
Ученый секретарь диссертационного совета доктор химических наук Г.А. Евтюгин 0-734577
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. Проблема экологических функций почв в ус ловиях их антропогенной трансформации в настоящее время представляет важнейшую фундаментальную проблему экологии. Это связано с тем, что "почва является центральным узлом экологических связей, объединяющим в единое целое другие структурно-функциональные составляющие биосферной системы: гидросферу, атмосферу, биомир планеты и земную кору" [Добро вольский, Никитин, 2000]. Среди экологических функций почв важную роль играют гидросферные;
прежде всего, здесь важна роль почвы как за щитного барьера против проникновения техногенных загрязнителей.
Жидкие углеводороды (УВ) являются одними из самых распространен ных и наиболее экологически опасных (по токсичности;
масштабу, длитель ности и устойчивости действия) загрязнителей природной среды. Их основ ными источниками являются нефть и нефтепродукты (моторное топливо, масла, углеводородные растворители), попадающие на поверхность почвы при авариях резервуаров и трубопроводов. Степень загрязнения ими почвен ного покрова определяется интенсивностью аварийных проливов УВ, состав ляя в среднем при одном разрыве нефтепровода 2 т на 1000 м площади. По данным за 55-летний период в республике Татарстан добыча 1 т нефти со провождалась разрушением или загрязнением 1-1,3 м3 земли [Гилязов, Гай син, 2000].
Для надежного прогнозирования возможного распространения УВ и по иска эффективных методов реабилитации загрязненных ими почв необходи мы детальные представления о механизмах транспорта УВ. В связи с этим в последние годы в природных и лабораторных условиях интенсивно изучают фильтрацию и распределение УВ в почвах [Солнцева, 1998, 2002;
Acher. et al., 1989;
Zhou, Blunt, 1997;
IUangasekare et al., 1999;
Pasteris et al., 2002].
Свойственная природным условиям естественная гетерогенность почвенной среды и комплексность физико-химических взаимодействий, возникающих при попадании УВ в почву, затрудняют исследование механизмов их удер живания и переноса. По этой причине для выявления закономерностей пове дения УВ и физико-химической природы их взаимодействия с пористой сре дой необходимо предварительное изучение этих процессов в однородной (не нарушенной трещинами и каналами) почве - в контролируемых условиях, ис ключающих неопределенность почвенной структуры, влияние атмосферных осадков, температуры, движения воздушных масс на процессы увлажнения высыхания почвы. В связи с этим широкое применение в мировой исследова тельской практике имеют насыпные почвенные колонки. Полученные ре зультаты используют для информационного обеспечения математических моделей.
С целью сокращения числа варьируемых почвенных параметров лабора торные исследования переноса жидких УВ ведутся главным образом с ис пользованием наиболее простых по составу и структуре песчаных почв. При этом остаются неисследованными характерные для России средне- и тяжело суглинистые почвы с достаточно большим содержанием органического ве щества. Среди свойств почвы, влияющих на фильтрацию УВ, принципиально важна ее влажность. Весной, когда почвы находятся в состоянии наименьшей (полевой) влагоемкости, в них поступают значительные объемы техногенных загрязнителей, скапливающихся на поверхности за осенне-зимний период. В этой связи большой интерес представляет изучение их миграции в сильно ув лажненных почвах.
Цель работы. Исследование барьерных функций тяжелосуглинистого выщелоченного чернозема в отношении экзогенных жидких углеводородов.
Для этого предусматривалось изучение закономерностей их миграции в почве однородной структуры с плотностью естественного сложения при двух начальных уровнях влажности - наименьшая влагоемкость и воздушно-сухая почва.
Задачи исследований.
1. Установить характер структурных изменений в почве при разной дли тельности увлажнения воздушно-сухого выщелоченного чернозема до наи меньшей влагоемкости (НВ). 2. Исследовать транспорт и распределение УВ в увлажненном до НВ и воздушно-сухом выщелоченном черноземе с однород ной структурой при первичном (впитывание УВ) и вторичном (их перерас пределение под влиянием 2,5-33-х месячного дренирования воды) загрязне нии. 3. Изучить влияние углеводородного загрязнения на водно фильтрационные свойства выщелоченного чернозема. 4. Выявить роль про цессов сорбции-десорбции и естественной деградации в транспорте и рас пределении УВ в увлажненном до НВ и воздушно-сухом выщелоченном чер ноземе. 5. Исследовать влияние природных минеральных сорбентов на барь ерные функции почвы в отношении УВ.
Научная новизна и теоретическая значимость.
Исследованы защитные свойства тяжелосуглинистого выщелоченного чернозема в отношении экзогенных жидких УВ при первичном и вторичном загрязнении. Изучены закономерности и определены параметры их переноса и удерживания в почве с однородной структурой и разной первоначальной влажностью. Выявлено ограниченное впитывание УВ в почву с НВ. Показа но, что гумусовый слой выщелоченного чернозема однородной структуры, увлажненный до НВ, полностью задерживает миграцию алифатических и ароматических УВ в нижние слои почвы. Таким образом, установлена его роль как защитного барьера в отношении экзогенных УВ.
Определены временные этапы структурной реорганизации порового пространства выщелоченного чернозема под воздействием почвенной влаги.
Показано, что состояние НВ достигается почвой уже через 6, а перестройка ее поровой структуры - только через 40 сут 6 до 40 суток изменения в структуре порового п дят в основном за счет перераспределения влаги между порами разного размера, а не за счет изменения ее общего содержания.
Установлено, что внесение местной цеолитсодержащей породы в коли честве не менее 5 вес.% в верхний (пахотный) слой насыщенного влагой вы щелоченного чернозема существенно повышает его барьерные функции в отношении УВ за счет повышения гидравлического сопротивления пористой среды.
Практическая значимость и реализация результатов исследований.
Полученные закономерности могут быть использованы для оценки со стояния загрязненных УВ участков почвы и расчета возможного распростра нения УВ, а также поиска эффективных методов их удаления и изоляции. В работе обосновано новое решение проблемы усиления барьерных функций почв в отношении загрязнения УВ нижних горизонтов почв и грунтовых вод:
путем предварительного внесения в верхний слой почвы местных природных высокопористых сорбентов. Результаты работы характеризуют выщелочен ный чернозем как эффективный материал для создания углеводородоизоли рующих оболочек нефте- и продуктохранилищ. Получена количественная информация для экспериментального обеспечения математических моделей массопереноса, которая используются при постановке задач трехфазной фильтрации жидких УВ в почвах.
Связь темы диссертации с плановыми исследованиями. Работа вы полнена в научно-исследовательской лаборатории почвенно-растительных систем и атмосферы и на кафедре моделирования экосистем Казанского го сударственного университета в соответствии с планом госбюджетной темы НИР КГУ (№ госрегистрации 01200215629) "Развитие теории и прикладных аспектов взаимодействия экзогенных веществ с компонентами природной среды" и в рамках гранта РФФИ № 00-04-48540 "Экспериментальное и мате матическое моделирование процессов переноса различных классов малорас творимых органических веществ в почвах".
Декларация личного участия автора. Автор провела анализ литера турных данных по вопросам транспорта жидких углеводородных загрязните лей в почвах;
участвовала в обработке и обсуждении полученных результа тов и формулировке выводов, и в написании статей и тезисов докладов. Ею введена в эксплуатацию вакуум-капилляриметрическая установка по опреде лению распределения пор по размерам в увлажненной почве (70 колонок);
проведены эксперименты по определению скорости фильтрации воды в поч вах и транспорту УВ в выщелоченном черноземе (опыты в 52 колонках) и осуществлено хроматографическое определение содержания остаточных УВ (послойный анализ почвы в колонках, всего 680 образцов).
Апробация. Результаты исследований, изложенные в диссертации, были представлены и докладывались на ежегодных итоговых научных конферен циях КГУ (1998-2003 гг.);
III и V Республиканских научных конференциях «Актуальные экологические проблемы Республики Татарстан» (Казань, 1997, 2002 г.г.);
Всероссийской научно-практической конференции, посвященной 125-летию И.И. Спрыгина «Проблемы охраны и рационального использова ния природных экосистем и биологических ресурсов» (Пенза, 1998);
1-й Все российской конференции «Лизиметрические исследования почв» (Москва, 1998);
IV традиционной научно-технической конференции стран СНГ «Про цессы и оборудование экологических производств» (Волгоград, 1998);
Все российском симпозиуме «Лизиметрические исследования в агрохимии, поч воведении, мелиорации и агроэкологии» (Москва, 1999);
Всероссийской кон ференции «Экологические проблемы и пути их решения в зоне Среднего По волжья» (Саранск, 1999);
III съезде Докучаевского общества почвоведов «Почвы в XXI веке» (Суздаль, 2000);
Всероссийской научно-практической конференции «Агроэкологические проблемы сельскохозяйственного произ водства в условиях техногенного загрязнения агроэкосистем» (Казань, 2001);
5-й и 6-й конференциях молодых ученых «Биология - наука 21-го века» (Пущино, 2001,2002 г.г.).
Положения, выносимые на защиту.
1. Разная длительность увлажнения тяжелосуглинистого выщелоченного чернозема вызывает различия в структуре его порового пространства и как следствие - в объемах впитывания, глубине проникновения и характере рас пределения УВ в почве.
2. Загрязнение УВ верхних слоев (пахотный и подпахотный горизонты) воздушно-сухого выщелоченного чернозема однородной структуры в коли честве, превышающем емкость удерживания, приводит к их дренированию через почву, тогда как в увлажненную до НВ почву они впитываются огра ниченно.
3. Загрязнение УВ существенно (в 2 раза) снижает скорость фильтрации воды в выщелоченном черноземе.
4. В отличие от загрязненной воздушно-сухой почвы, в увлажненном до НВ выщелоченном черноземе вклад процессов сорбции-десорбции УВ в их распределение не проявляется, а степень их деградации существенно выше.
5. Внесение местной цеолитсодержащей породы в количестве не менее вес.% в верхний (пахотный) слой выщелоченного чернозема однородной структуры усиливает его барьерные функции в отношении нисходящей ми грации УВ за счет повышения гидравлического сопротивления водонасы щенной пористой среды.
Публикации. По материалам диссертации опубликовано 15 научных работ, в том числе 1 в международном и 2 в центральных журналах, 3 в сбор никах, 9 тезисов докладов конференций, симпозиумов и съездов. 4 работы приняты к печати, в том числе 2 в центральных журналах.
Структура и объем работы. Диссертация состоит из введения;
обзора литературы, касающегося общей характеристики УВ как загрязнителей ок ружающей среды и основных процессов, определяющих их транспорт и рас пределение в почвах (глава 1);
описания объектов, условий и методов прове дения экспериментов (глава 2);
обсуждения полученных экспериментальных данных (глава 3);
выводов;
научно-практических рекомендаций и списка ли тературы (161 источник, из них 74 иностранных). Работа изложена на странице машинописного текста, содержит 12 таблиц и 30 рисунков.
УСЛОВИЯ, ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЙ Объекты исследований. В состав модельной смеси входили УВ - пред ставители основных классов компонентов моторных топлив, нефтей и про мышленных растворителей: алифатические (н-нонан, н-тетрадекан), алицик лический декалин ([4,4,0]-бициклодекан) и ароматический 1-метилнафталин, взятые в одинаковых весовых количествах. В работе также использованы ме стные природные минералы с высокой сорбционной способностью, входя щие в состав цеолитсодержащей породы (ЦСП) Татарско-Шатрашанского месторождения: опал-кристобалит (28%), гейландит-клиноптилолит (19%), глинистые минералы (26%), кальцит (22%), кварц (4%) и глауконит (2%.).
Транспорт смеси УВ изучали в гумусовом слое (0-40 см, пахотный и подпахотный горизонты) выщелоченного чернозема (среднемощный, средне гумусный на желто-бурых делювиальных тяжелых суглинках). Этот тип почв наиболее распространен в районах с углеводородным загрязнением в Татар стане. Исходные показатели почвы: содержание гранулометрических фрак ций в среднем для слоя 0-40 см: физический песок (0,01 мм) - 46%, физиче ская глина (0,01 мм) - 54%;
ил (0,001 мм) - 31%;
остальные показатели для слоев 0-20 см (пахотный горизонт) и 20-40 см (подпахотный горизонт) соответственно: плотность сложения - 1,11 и 1,30 г/см3, плотность твердой фазы - 2,41 и 2,60 г/см3, пористость - 54 и 50%, Сорг. по Тюрину - 3,99 и 3,11%, pHKci - 6,5 и 5,8, N щелочногидролизуемый по Корнфилду - 268 и мг/кг, Р 2 О 5 подвижный - 229 и 145 мг/кг и К 2 О обменный по Чирикову - и 100 мг/кг. В опыте по распределению почвенной влаги для сравнения ис пользовали также типичные для региона светло-серую лесную (среднесугли нистая) и дерново-подзолистую (супесчаная) почвы, контрастные по содер жанию органического вещества (для слоя 0-40 см Сорг. по Тюрину - 0,78 и 0,54% соответственно) и гранулометрических фракций.
Методика проведения опытов. Распределение пор по размерам в вы щелоченном черноземе (в насыпных образцах и почвенных кернах) при раз личном содержании влаги количественно оценивали с помощью вакуум капилляриметрической установки. Повторность 7-кратная.
В опытах по фильтрации измельченную воздушно-сухую почву поме щали в стеклянные колонки (длина 60 см, диаметр 3,5 см) с плотностью и поровым объемом, близкими к их естественному сложению. Колонки с чер ноземом набивали послойно (20-40 см и 0-20 см), для других почв использо вали слой 0-40 см. Повторность 2-4-кратная.
а) 'Опыты по изучению транспорта УВ в выщелоченном черноземе, предварительно доведенном до наименьшей влагоемкости в течение 6 суток (вариант 1) и 40 суток (вариант 2). Первичное загрязнение ("аварийный" пролив УВ) моделировали, нанося на поверхность увлажненной почвы 15 мл смеси УВ (слой высотой 2 см). Вторичное загрязнение (перераспределение УВ в почве под действием атмосферных осадков) моделировали путем на сыщения загрязненной почвы дистиллированной водой. Продолжительность опытов (длительность дренирования воды) - 2,5-33 месяца. По окончании опытов колонки разбирали для послойного анализа.
По такой же методике в вариантах 1, 2 изучали транспорт УВ в чернозе ме с плотностью 1,39-1,15 г/см3 (поровые объемы почвы в колонках соответ ственно 42-52%), а также - в присутствии внесенной при набивке в верхний (0-20 см, пахотный) слой чернозема ЦСП в количестве 5 и 25 вес.%.
б) В опытах по изучению транспорта углеводородов в воздушно-сухом выщелоченном черноземе для сравнения с результатами описанных выше опытов на поверхность сухой почвы наносили смесь УВ в объеме, равном впитывавшемуся в увлажненный до НВ чернозем (10 мл). Впитывание У В в воздушно-сухую почву продолжалось 2-3 минуты, распространение их фрон та в почве - 7 суток. После остановки фронта УВ в течение 23 месяцев осу ществляли дренирование воды при ее постоянном уровне на поверхности (как в опытах с увлажненным черноземом);
далее колонки разбирали.
Анализ содержания углеводородов и воды в профиле почвы. По слойный анализ содержания УВ в почве, извлеченной из колонок с шагом см, проводили после экстракции ССЦ на газожидкостном хроматографе "Chrom 5" с насыпной колонкой (Inerton AW-HMDS, 5% SE-30) и пламенно ионизационным детектором. Порог обнаружения У В 0,001 вес.%, точность хроматографического определения 5%. Полученные данные обрабатывали статистически с помощью прикладных программ Statgraph и MS Excel.
РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ 1. Динамика почвенной структуры при увлажнении воздушно-сухого выщелоченного чернозема до наименьшей влагоемкости Процесс увлажнения суглинистых почв сопровождается изменением структуры, вызванным набуханием входящих в их состав глинистых минера лов. В этой связи при приведении набухающей почвы в состояние НВ необ ходимо учитывать: а) время достижения структурой почвы равновесного со стояния и б) изменения, которые претерпевает структура однородной из мельченной почвы при переходе от воздушно-сухого состояния к НВ. В на сыпной колонке набухание воздушно-сухого выщелоченного чернозема за вершалось за период 40-суточного увлажнения, рис.1. При этом в течение первых 6 суток отмечали значительное (в 3-4 раза) изменение скорости фильтрации воды, свидетельствовавшее о существенной перестройке струк туры почвы, а в период от 40 до 60 (окончание опыта) суток скорость фильт рации была постоянной.
Рис.1. Скорость фильтрации воды в выщелоченном черноземе до и после загрязнения углеводородами.
До загрязнения углеводородами.
После 6-суточного промачива ния почвы и последующего загряз нения углеводородами.
После 40-суточного промачива ния почвы и последующего загряз нения углеводородами.
С учетом полученных результатов характер изменений в структуре на бухающего выщелоченного чернозема оценивали после 1-, 6-, 40- и 60 суточного увлажнения. В результате увлажнения почвы в насыпных образцах уменьшалась доля крупных (50 мкм - влагопроводящих) и средних (50- мкм - влагосохраняющих) пор и возрастала доля мелких (3 мкм). За период 6-суточного увлажнения эти изменения были в интервале 3-8%, от 6 до суток - 4-8% от порового объема почвы, а от 40 до 60 суток распределение пор было постоянным. Содержание влаги в образцах выщелоченного черно зема, промачивавшихся разное время, было близким (для 6 и 40 суток в сред нем 36,0 и 36,5% соответственно), так же, как и ее распределение в профиле колонок. Это свидетельствует о том, что отмеченные выше изменения в структуре порового пространства (в пользу пор меньшего размера) в период от 6 до 40 суток увлажнения происходили в большей степени за счет пере распределения почвенной влаги между порами разного размера, чем за счет изменения ее общего содержания в почве. Сравнение воздушно-сухих из мельченных образцов с кернами до промачивания показало, что в последних присутствовало большее количество крупных (100-300 и более 300 мкм) пор.
В ходе увлажнения структура порового пространства измельченных насып ных образцов и кернов сближалась.
Таким образом, различия в длительности достижения набухающей поч вой состояния НВ приводят к различиям в структуре ее порового простран ства. Состояние НВ достигалось почвой уже через 6 суток увлажнения, а пе рестройка ее поровой структуры - через 40 суток. Поэтому, несмотря на близкие значения влажности почвы при указанных сроках достижения со стояния НВ, ее гидрофизические (в том числе фильтрационные) свойства мо гут при этом отличаться. В связи с этим опыты по исследованию транспорта УВ проводили в выщелоченном черноземе, доведенном до НВ при двух сро ках увлажнения;
далее они обозначены как варианты 1 и 2 - соответственно и 40 суток.
2. Транспорт углеводородов в выщелоченном черноземе, увлажненном до наименьшей влагоемкости а) Впитывание и распределение углеводородов в почве (первичное за грязнение). При обоих сроках достижения выщелоченным черноземом со стояния НВ (6 и 40 суток - варианты 1 и 2) количество впитывавшегося в не го У В в ходе первичного загрязнения было ограниченным. При этом время впитывания УВ в почву, а также одновременного вытекания водного ин фильтрата не превышало 20-22 суток. Однако скорости впитывания УВ и стекания вытесняемой воды, а также их объемы в колонках с 6-суточным промачиванием были существенно выше, особенно в первые двое суток, рис.2.
Рис.2. Объемы впитавшихся угле водородов (УВ) и вытесненной во ды в опытах с выщелоченным чер ноземом в состоянии наименьшей влагоемкости при разной длитель ности увлажнения почвы (первич ное загрязнение, кумулятивный вид).
После 6-суточного промачивания почвы: Вода, Углеводороды.
После 40-суточного промачивания почвы: Вода, Углеводороды.
Полученные результаты согласуются с характером различий в структуре порового пространства выщелоченного чернозема при различных сроках ув лажнения: большей долей крупных и средних пор после 6 суток увлажнения почвы. По этой причине впитывание УВ в почвенные поры в варианте 1 про текало быстрее и в большем объеме. При обоих сроках увлажнения объемы впитывавшихся в выщелоченный чернозем УВ были значительно (в 2-3 раза) больше, чем объемы вытекавшей из него воды, Это вызвано тем, что при первичном загрязнении УВ не только вытесняли воду из почвенных пор за счет снижения в них капиллярного давления вследствие растекания УВ по водному мениску в капилляре, но и занимали крупные поры, освобожденные вытекшей гравитационной водой. На рис.3а,б приведено распределение ис следованных УВ, оставшихся в каждом слое после фильтрации и деградации в почве, по высоте почвенных колонок с выщелоченным черноземом при разной длительности его первоначального увлажнения до НВ. (Для удобства сравнения профилей распределения УВ в колонках их содержание приведено в нормированном виде - в процентах от общего количества УВ, оставшихся в колонке). В обоих вариантах жидкий фронт загрязнителя продвигался до 21 23 см, и в профиле отмечали два максимума содержания УВ: первый (боль Содержание УВ, Содержание УВ, % от остаточного количества смеси % от остаточного количества смеси 0 2 4 6 8 10 0 2 4 6 8 0 20 40 60 80 0 20 40 60 Влажность почвы, вес.% Влажность почвы, вес.% а б Рис.3. Распределение углеводородов (УВ) и влаги по глубине выщелоченного чернозема после впитывания УВ в почву, увлажненную до наименьшей вла гоемкости в течение 6-суточного (а) и 40-суточного (б) промачивания (пер вичное загрязнение).
н-Нонан, Декалин, 1-Метилнафталин, н-Тетрадекан, Влага.
ший по величине) - в поверхностном (0-6 см) слое, а второй - на глубине 19 21 см для образцов с 6-суточным и 14-16 см - с 40-суточным увлажнением.
Кроме того, отличие в распределении УВ заключалось в относительной ве личине максимумов: в варианте 1 первый из них был в 2 раза, а в варианте - в 4 раза больше, чем второй. Распределение УВ в профиле соответствовало отмеченным выше различиям в структуре почвы: в варианте с большей долей крупных и средних пор второй максимум продвинулся дальше, и относи тельное содержание УВ в нем возросло. Соотношение исследуемых УВ в профиле колонок достоверно не менялось.
Сравнение профилей влажности типичных почв Волжско-Камской лесо степи (супесчаной дерново-подзолистой, среднесуглинистой серой лесной и исследуемого нами тяжелосуглинистого выщелоченного чернозема, рис.4), находившихся в состоянии НВ, показало, что в слое 0-2 см чернозема содер жание влаги было в среднем на 15% выше в сравнении с остальным профи лем;
в серой лесной почве с меньшей долей глинистых частиц подобное пре вышение влажности было меньше (5%), а в дерново-подзолистой влага рав номерно распределялась по профилю колонки. Объем влаги в слое 0-2 см чернозема в среднем на 10% превышал исходный поровый объем почвы. Это свидетельствовало об интенсивном набухании и диспергировании глинистых частиц, вследствие чего увеличивалась порозность поверхностного слоя поч вы.
В выполненных ранее работах по фильтрации УВ в почвенных колонках не было обнаружено остановки их впитывания в почву с НВ. Это связано, прежде всего, с тем, что в них исследовали почвы, легкие по гранулометри Рис.4. Распределение влаги в профи ле почв, увлажненных до наимень шей влагоемкости в течение 40 суточного промачивания (до загряз нения углеводородами).
Выщелоченный чернозем, Серая лесная почва, Дерново-подзолистая почва.
0 20 40 60 Влажность почвы, вес.% ческому составу. Взаимодействие экзогенных УВ с водной дисперсией гли нистых частиц может быть одним из возможных механизмов их удерживания в верхнем слое выщелоченного чернозема [Бреус и др., 2002,2003].
б) Перераспределение углеводородов в почве в условиях дренирования во ды (вторичное загрязнение).
Дренирование воды приводило к перераспределению УВ в черноземе и увеличению глубины их проникновения по сравнению с почвой после пер Содержание УВ, Содержанке УВ, % от остаточного количества смеси % от остаточного количества смеси 0 2 4 6 8 10 0 2 4 6 9 0 20 40 О 20 40 60 Влажность почвы, вес.% Влажность почвы, вес.% а б Рис.5. Распределение углеводородов (УВ) и влаги по глубине выщелоченного чернозема после 7-месячного дренирования воды в загрязненной почве, ув лажненной до наименьшей влагоемкости в течение 6-суточного (а) и 40 суточного (б) промачивания (вторичное загрязнение).
н-Нонан, Декалин, 1-Метилнафталин, н-Тетрадекан, Влага.
вичного загрязнения. В большей степени эти изменения происходили в чер ноземе, предварительно увлажненном до НВ в течение 6 суток. Так, после месяцев дренирования воды (рис.5а, б) фронт распространения УВ продви гался в сравнении с первичным загрязнением глубже на 15-20%, а после месяцев - почти на 50%. После 33 месяцев фильтрации дальнейшего про движения фронта УВ не отмечали, причем происходило "сглаживание" вто рого максимума их содержания. Наиболее вероятным механизмом, вызывав шим продвижение УВ в ходе вторичного загрязнения чернозема с однород ной структурой, являлось "проталкивание" УВ дренируемой водой.
в) Влияние углеводородного загрязнения на водопроницаемость поч вы. Загрязнение выщелоченного чернозема УВ привело к ухудшению его водно-фильтрационных свойств, причем в большей степени - в варианте 2.
Различия в скоростях водной фильтрации между вариантами соответствовали данным по объемам и динамике впитывания УВ при первичном загрязнении чернозема, а также по изменению структуры порового пространства (мень шая доля крупных и средних пор при 40-суточном увлажнении). Если в вари анте 2 после трех суток фильтрации воды ее скорость в загрязненной УВ почве была практически постоянной, то в варианте 1 она уменьшалась посте пенно, достигая через 40 суток значения, близкого к варианту 2 (в 2 раза меньше в сравнении с незагрязненной почвой). Отмеченный эффект был, ве роятно, связан с набуханием почвы под действием воды, продолжавшимся в варианте 1 (в варианте 2 этот процесс был завершен до нанесения УВ), а также со стеканием захваченных водой УВ, приводившим к сужению эффек тивного диаметра расположенных ниже влагопроводящих пор. Возможно, вследствие этого в колонках с предварительным 6-суточным увлажнением отмечали несколько большую, чем с 40-суточным, глубину нисходящего продвижения УВ.
Результаты опытов показали, что загрязнение УВ значительно уменьшало скорость фильтрации воды во всех исследованных почвах: в вы щелоч ином черноземе и серой лесной почве в 2 раза, в дерново-подзолистой - на 25%.
3. Транспорт углеводородов в воздушно-сухом выщелоченном черноземе В отличие от предварительно увлажненной почвы, в воздушно-сухом выщелоченном черноземе наблюдали дренирование УВ через слой 0-40 см при превышении объема их удерживания. Поскольку основной целью опытов была оценка влияния влаги на транспорт УВ в набухающих почвах, на по верхность воздушно-сухой почвы при имитации первичного загрязнения на носили смесь УВ в том же объеме, который впитывался в увлажненный до НВ чернозем (этот объем был существенно меньше, чем емкость удержива ния почвы).
После быстрого впитывания УВ наблюдали их нисходящее продвиже ние и через 7 суток - остановку фронта на глубине 18-19 см. Распределение УВ в профиле колонки характеризовалось одним максимумом в поверхност ном (0-2 см) слое;
далее их концентрация последовательно снижалась, рис. 6а. В отличие от увлажненной, в воздушно-сухой почве исходное соот ношение УВ в смеси (1:1:1:1) по профилю изменялось. В слое 0-10 см макси мальным было содержание 1 -метилнафталина, а минимальным - нонана;
де калин и тетрадекан занимали промежуточное положение. Причиной повы шенного удерживания 1-метилнафталина, очевидно, является большая (на 30-50%) сорбционная активность сухого выщелоченного чернозема в отно Содержание УВ, Содержание УВ, % от остаточного количества смеси % от остаточного количества смеси 0 2 4 6 8 1 0 0 2 4 6 8 1 0 20 40 60 80 0 20 40 60 Влажность почвы, вес.% Влажность почвы, вес.% а б Рис.6. Распределение углеводородов (УВ) и влаги по глубине выщелоченного чернозема после впитывания УВ в воздушно-сухую почву (первичное загрязне ние - а) и после 23-х месячного дренирования воды (вторичное загрязнение - б).
н-Нонан, Декалин, 1-Метилнафталин, н-Тетрадекан, Влага.
шении ароматических УВ в сравнении с насыщенными. По мере приближе ния к фронту УВ содержание 1-метилнафталина снижалось - вследствие его большего удерживания в верхних слоях почвы. Низкое содержание нонана в верхней части профиля не могло быть вызвано различиями в сорбции УВ (емкости сорбции нонана, декалина и тетрадекана на выщелоченном черно земе близки), и вероятно являлось следствием его повышенной летучести по сравнению с другими УВ.
После первичного загрязнения воздушно-сухого выщелоченного черно зема осуществляли дренирование воды (вторичное загрязнение). Как и в предварительно увлажненной почве, после 23 месяцев дренирования в про филе распределения УВ наблюдали два максимума содержания УВ: в по верхностном слое 0-2 см и на глубине 9-11 см - но, в отличие от нее, близких по величине. Глубина проникновения УВ в исходно воздушно-сухом черно земе была на 30% меньше, чем в почве, предварительно увлажненной до НВ.
В результате дренирования водой первично загрязненного воздушно сухого выщелоченного чернозема в его профиле появлялся второй максимум (рис.6а), а граница проникновения УВ практически не смещалась, рис.6б.
Очевидно, дренирование водой сопровождалось десорбцией и вытеснением из почвенных пор УВ, до дренирования образовывавших одну полосу в про филе почвы. Следствием этого была нисходящая миграция УВ в пределах зо ны загрязнения (до 18-19 см), приводившая в итоге к образованию второго максимума. Процесс десорбции УВ изменял их распределение в профиле.
Поскольку насыщенные УВ десорбировались черноземом быстрее аромати ческого 1-метилнафталина, конкурентно вытесняясь водой с поверхности выщелоченного чернозема, второй максимум содержания последнего отста вал по глубине проникновения от остальных УВ на 20-30%.
4. Влияние процессов деградации углеводородов на их содержание в выщелоченном черноземе различной влажности Сравнение профилей распределения УВ в загрязненном выщелоченном черноземе после дренирования воды разной длительности выявило достовер ную тенденцию снижения их содержания от времени - как в увлажненной до НВ, так и в первоначально воздушно-сухой почве. Если концентрации УВ в почве после первичного загрязнения составляли 3,5-5%, то после 2-3-х лет ней фильтрации они значительно снизились - до 0,2-0,4 вес.%. В отсутствии заметного вклада испарения в транспорт УВ в увлажненной почве это свиде тельствовало о влиянии их деградации на общее содержание и распределение в профиле.
Известно, что в загрязненных почвах в целом гораздо более интенсивно протекает биодеструкция УВ, чем их абиотическая деградация [Мироненко, Петров, 1995;
Fass et al., 1997]. Для исследуемых УВ ранее была установле на концентрация - 3-3,5 вес.%, пороговая в отношении токсического воздей ствия УВ на микробиоценоз выщелоченного чернозема [Breus et al., 2001;
Zaripova et al., 2001]. Поскольку количество УВ, впитывавшихся в колонки с естественной плотностью сложения почвы, было больше этой дозы, для оценки влияния более низких концентраций впитавшихся УВ на их деграда цию мы изучили транспорт УВ в выщелоченном черноземе с плотностью сложения в слое 0-20 см 1,39-1,15 г/см3 (поровые объемы почвы в колонках соответственно 42-52%), предварительно увлажненном до НВ. Результаты показали, что в этих опытах объемы УВ, впитывавшихся в почву, были меньше. Зависимость относительной степени деградации УВ (40-95%) в вы щелоченном черноземе от длительности фильтрации (2-33 месяца) указыва ла, что степень деградации УВ определялась не только временем их нахож дения в почве, но и количеством впитавшихся УВ, рис.7. При одинаковой длительности фильтрации степень деградации УВ, внесенных в почву в кон центрациях, превышавших пороговую дозу (от 3,5 до 6,5%), была меньше по сравнению с УВ, содержание которых (от 1 до 3%) не достигало этой дозы.
На степень деградации УВ особенно сильное влияние оказывал уровень исходной влажности выщелоченного чернозема. Если в предварительно ув лажненной (до введения УВ) почве за двухлетний период дренирования воды деградировало около 95% от поступившего количества, то за этот же период в почве, загрязненной в воздушно-сухом состоянии, только 40%.
Рис.7. Влияние длительности фильтрации и количества углеводо родов (УВ), впитавшихся в почву, на их деградацию в выщелоченном черноземе.
Концентрация углеводородов в почве 1-3 вес.%.
Концентрация углеводородов в почве 3,5-6,5 вес.%.
Воздушно-сухая почва.
Сплошные линии - логарифмиче О 5 10 15 20 25 30 Длительность фильтрации, месяцы ские линии тренда.
5. Влияние природных цеолитов на барьерные функции выщелоченного чернозема Учитывая, что почвенная влага является препятствием для инфильтра ции УВ в почвах, мы предприняли попытку повысить ее содержание за счет внесения местных природных минералов - цеолитсодержащей породы (ЦСП). Результаты опытов показали, что введение в верхний (0-20 см) слой чернозема ЦСП в количестве от 5 до 25 вес.% увеличивало его влажность на 2-5% (Рис.8). В черноземе, не содержавшем ЦСП, влажность верхнего слоя Рис.8. Распределение влаги по глу бине выщелоченного чернозема, со держащего природные адсорбенты (увлажнение до наименьшей влаго емкости в течение 6-суток).
Без адсорбента, 5% ЦСП, 25% ЦСП.
0 20 40 60 Влажность почвы, вес.% была только на 3% больше в сравнении с нижним, а при внесении ЦСП (5% и 25%) она достоверно увеличивалась (соответственно, на 4 и 7%). Таким обра зом, была показана достаточно высокая водоудерживающая способность ме стной ЦСП.
При изучении процессов совместной 11-месячной фильтрации воды и смеси УВ в увлажненном (в течение 6 суток) до НВ выщелоченном чернозе ме, содержащем внесенную ЦСП, отмечали 3,5-5-и кратное снижение объема впитываемых УВ в сравнении с почвой без ЦСП. При этом все УВ смеси бы ли зафиксированы только в близком к поверхности слое (0-4 см), далее по глубине их содержание резко (на 95-99%) падало (Рис.9), тогда как в профи ле почвы без ЦСП передний фронт УВ распространялся за 7 месяцев до глу бины 25-27 см с максимумом при 23-25 см (Рис.5а).
Содержание УВ, % от остаточного количества смеси Рис.9. Распределение углеводо О 10 20 родов (УВ) и влаги по глубине выщелоченного чернозема, со держащего 5% ЦСП после 11 ме сячного дренирования (увлажне ние до наименьшей влагоемкости в течение 6-суток;
вторичное за грязнение).
н-Нонан, • Декалин, 1 -Метилнафталин, 0 20 40 60 ВО н-Тетрадекан, X Влага.
влажность почвы, вес.% Таким образом, было показано, что внесение ЦСП в верхний слой водо насыщенного выщелоченного чернозема однородной структуры приводит к резкому увеличению защитного действия почвы в отношении проникновения УВ в нижележащие слои вследствие увеличения водного барьера на пути ми грации УВ в почвенном профиле.
ВЫВОДЫ 1. Определены временные этапы структурной реорганизации порово го пространства выщелоченного чернозема под воздействием почвенной вла ги. Состояние наименьшей влагоемкости (НВ) достигается почвой уже через 6, а перестройка ее поровой структуры - только через 40 суток увлажнения. В период от 6 до 40 суток изменения в структуре порового пространства почвы происходят в основном за счет перераспределения влаги между порами раз ного размера, а не за счет изменения ее общего содержания.
2. При первичном загрязнении воздушно-сухой почвы в случае пре вышения объема удерживания жидкие углеводороды (УВ) дренируют через гумусовый (0-40 см) слой, а в предварительно увлажненную до НВ почву они впитываются ограниченно. Вторичное загрязнение вызывает перераспреде ление УВ в обоих случаях, а также увеличение глубины их проникновения только в предварительно увлажненной почве (за 2 года на 50%).
3. Различная длительность увлажнения почвы до НВ (6 и 40 суток) вызывает различия в объемах и глубине проникновения УВ. В первом случае при первичном загрязнении отмечали на 35-40% большие объемы впитыва ния УВ, а при вторичном - на 20% более глубокое проникновение УВ в поч ву.
4. При равных объемах УВ, поступивших в почву с однородной структурой и плотностью естественного сложения, продвижение их фронта увеличивается в последовательности: первичное загрязнение воздушно-сухой почвы вторичное загрязнение воздушно-сухой почвы первичное загряз нение увлажненной до НВ почвы вторичное загрязнение увлажненной до НВ почвы.
5. Гумусовый слой выщелоченного чернозема однородной структуры, увлажненный до НВ, характеризуется высокими защитными свойствами и полностью задерживает нисходящее продвижение экзогенных УВ в нижние слои почвы и грунтовые воды.
6. Загрязнение УВ значительно уменьшает скорость фильтрации воды во всех исследованных почвах: в выщелоченном черноземе и серой лесной почве в 2 раза, в дерново-подзолистой - на 25%.
7. Вклад сорбции и естественной деградации различен в первоначально увлажненном до НВ и воздушно-сухом выщелоченном черноземе. В отличие от воздушно-сухой, в первоначально увлажненной почве вклад процессов сорбции-десорбции УВ в их транспорт и распределение не проявляется, а степень их деградации существенно выше.
8. Внесение местной цеолитсодержащей породы (ЦСП) в количестве не менее 5% в верхний (пахотный) слой выщелоченного чернозема однород ной структуры достоверно увеличивает влажность почвы и за счет этого зна чительно усиливает ее барьерные функции в отношении нисходящей мигра ции УВ.
НАУЧНО-ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ 1. Рекомендуется внесение местных цеолитсодержащих пород в выще лоченный чернозем в качестве способа защиты нижних горизонтов почвы и грунтовых вод от загрязнения УВ.
2. Рекомендуется проведение испытаний тяжелосуглинистого выщело ченного чернозема при устройстве углеводородозащитных оболочек нефте- и нефтепродуктохранилищ.
3. Полученные результаты используются при создании прогнозных ма тематических моделей переноса жидких углеводородных загрязнителей в на бухающих суглинистых почвах.
СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ 1. Королева Н.В. Изучение миграции органического вещества по поч венному профилю/ Н.В. Королева, Е.В. Ефстифеева, И.П. Бреус// Республи кан. конф. молодых ученых и специалистов: Тез.докл. - Казань, 1996. - С.
104.
2. Игнатьев Ю.А. Исследование процессов миграции органических ве ществ в типичных почвах Республики Татарстан/ Ю.А. Игнатьев, Е.В. Еф стифеева // Актуальные экологические проблемы Республики Татарстан: Тез.
докл. Ill Респуб. науч. конф. - Казань, 1997. - С. 189.
3. Ефстифеева Е.В. К вопросу защиты почв от загрязнения углеводород ными жидкостями/ Е.В. Ефстифеева, Ю.А. Игнатьев, И.П. Бреус, С.А. Не клюдов, В.А. Бреус// Проблемы охраны и рационального использования при родных экосистем и биологических ресурсов: Материалы Всерос. науч. практ. конф., посвященной 125-летию И.И. Спрыгина - Пенза, 1998. - С.392 394.
4. Бреус И.П. Лизиметрические исследования миграции веществ в поч вах Волжско-Камской Лесостепи/ И.П. Бреус, Ю.А. Игнатьев, Е.В. Ефсти феева, В.А. Бреус, С.А. Неклюдов, Ю.А. Куликов// Лизиметрические иссле дования почв: Тез. докл. 1-ой Всерос. конф. - М, 1998. - С.146-148.
5. Ефстифеева Е.В. Использование стационарных лизиметров для иссле дования процессов миграции углеводородов в почвах и почвенно-грунтовых водах/ Е.В. Ефстифеева, Ю.А. Игнатьев, И.П. Бреус// Процессы и оборудова ние экологических производств: Сб. тр. IV трад. науч.-техн. конф. стран СНГ - Волгоград, 1998. - С. 190-191.
6. Бреус И.П. Лизиметрические исследования миграции углеводородов в почвах/ И.П. Бреус, Е.В. Ефстифеева, В.А. Бреус, С.А. Неклюдов// Лизимет рические исследования в агрохимии, почвоведении, мелиорации и агроэколо гии: Тез. докл. Всеросс. симп. - М., 1999. - С. 119-122.
7. Ефстифеева Е.В. Экспериментальное исследование углеводородного загрязнения почвы/ Е.В. Ефстифеева, Ю.А. Игнатьев, И.П. Бреус, С.А. Не клюдов, В.А. Бреус, Ю.А. Куликов// Экологические проблемы и пути их ре шения в зоне Среднего Поволжья: Тез. докл. Всерос. конф. - Саранск, 1999. С.64-66.
8. Breus I.P. Transport and distribution of hydrocarbons in soil profile as af fected by soil structure and moisture/ I.P. Breus, E.V. Efstifeeva, V.A. Breus, S.A.Neckludov, Yu.A.Ignatiev// Environmental Radioecology and Applied Ecol ogy. -1999. - V.5. - № 2. - P.3- 9. Ефстифеева Е.В. Экологические проблемы миграции углеводородов в почвах/ Е.В. Ефстифеева, И.П. Бреус// Химия в окружающей среде: Сб. науч.
тр. - Казань: Изд-во Экоцентр, 2000. - С. 17-21.
10. Бреус И.П. Экспериментальное моделирование процессов переноса нерастворимых в воде органических веществ в почвах/ И.П. Бреус, Е.В. Еф стифеева, Ю.А. Игнатьев, С.А. Неклюдов, В.А. Бреус// Почвы в XXI веке:
Тез. докл. III съезда Докучаевского о-ва почвоведов - М.: Изд-во Почвенного института, 2000. - С. 140-141.
11. Ефстифеева Е.В. Транспорт и распределение жидких углеводородов в увлажненном выщелоченном черноземе/ Е.В. Ефстифеева, Ю.А. Игнатьев, С.А. Неклюдов// Биология - наука 21-го-века: Тез. докл. 5-й конф. мол. уче ных. Секция Почвоведение. - Пущино, 2001. С.225-226.
12. Бреус И.П. Миграция углеводородов в увлажненном до состояния полевой влагоемкости выщелоченном черноземе/ И.П. Бреус, Ю.А. Игнатьев, Е.В. Ефстифеева, С.А. Неклюдов, В.А. Бреус// Доклады РАСХН.- 2002. - № 4.
- С.34-37.
13. Смирнова-Ефстифеева Е.В. Экспериментальное исследование фильт рации жидких углеводородов в почвах/ Е.В. Смирнова-Ефстифеева, В.Г. Са рандов// Биология - наука 21-го-века: Тез. докл. 6-й конф. мол. ученых. Сек ция Почвоведение. - Пущино, 2002. №94.
14. Бреус И.П. Лизиметрический стационар Казанского госуниверситета (КГУ)/ И.П. Бреус, Е.В. Смирнова-Ефстифеева, Г.Р. Садриева, Л.Д. Поляко ва, Ю.А. Игнатьев, С.А. Неклюдов, В.А. Бреус// Агрохимический вестник. 2003.-№2.-С. 12-14.
15. Breus I.P. The natural attenuation of hydrocarbons in leached chernozem with different moisture contents/ I.P. Breus, E.V. Smirnova-Efstifeeva. S.A. Neck ludov, V.A. Breus// In-Situ and On-Site Bioremediation: Poster Abstracts of the 7 th Internat. Symp. USA, Orlando, 2003. N204.
Подписано в печать 21.04.03. Формат 60x84 1/16.
Усл. п.л. 1,25. Договор № 7 от 21.04.03.Тираж 100.
Лаборатория оперативной печати ТГТИ.
420036, г. Казань, ул. Побежимова, 47а, тел. 711429.