авторефераты диссертаций БЕСПЛАТНАЯ  БИБЛИОТЕКА

АВТОРЕФЕРАТЫ КАНДИДАТСКИХ, ДОКТОРСКИХ ДИССЕРТАЦИЙ

<< ГЛАВНАЯ
АГРОИНЖЕНЕРИЯ
АСТРОНОМИЯ
БЕЗОПАСНОСТЬ
БИОЛОГИЯ
ЗЕМЛЯ
ИНФОРМАТИКА
ИСКУССТВОВЕДЕНИЕ
ИСТОРИЯ
КУЛЬТУРОЛОГИЯ
МАШИНОСТРОЕНИЕ
МЕДИЦИНА
МЕТАЛЛУРГИЯ
МЕХАНИКА
ПЕДАГОГИКА
ПОЛИТИКА
ПРИБОРОСТРОЕНИЕ
ПРОДОВОЛЬСТВИЕ
ПСИХОЛОГИЯ
РАДИОТЕХНИКА
СЕЛЬСКОЕ ХОЗЯЙСТВО
СОЦИОЛОГИЯ
СТРОИТЕЛЬСТВО
ТЕХНИЧЕСКИЕ НАУКИ
ТРАНСПОРТ
ФАРМАЦЕВТИКА
ФИЗИКА
ФИЗИОЛОГИЯ
ФИЛОЛОГИЯ
ФИЛОСОФИЯ
ХИМИЯ
ЭКОНОМИКА
ЭЛЕКТРОТЕХНИКА
ЭНЕРГЕТИКА
ЮРИСПРУДЕНЦИЯ
ЯЗЫКОЗНАНИЕ
РАЗНОЕ
КОНТАКТЫ

Астрологический Прогноз на год: карьера, финансы, личная жизнь


На правах рукописи

НГУЕН НГОК ХОА

ПЛОСКИЕ НЕСТАЦИОНАРНЫЕ КОНТАКТНЫЕ ЗАДАЧИ

ДЛЯ УПРУГО-ПОРИСТЫХ СРЕД

01.02.04 – Механика деформируемого твердого тела

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

кандидата физико-математических наук

Москва – 2012

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)»

доктор физико-математических наук, профессор,

Научный руководитель:

Тарлаковский Дмитрий Валентинович

Официальные оппоненты: Кузнецов Евгений Борисович, доктор физико-математических наук, профессор, ФГБОУ ВПО "Московский авиационный институт (национальный исследовательский университет)", профессор.

Малашкин Анатолий Владимирович, кандидат физико-математических наук, доцент, Высшая школа экономики (национальный исследовательский университет), доцент.

Ведущая организация: Нижегородский государственный университет им. Н.И. Лобачевского (НИИ механики)

Защита состоится «09» ноября 2012 г. в 1530 часов на заседании диссертационного совета Д 212.125.05 в ФГБОУ ВПО Московский авиационный институт (национальный исследовательский университет), по адресу: 125993, г.Москва, ГСП-3, Волоколамское шоссе, дом 4.

С диссертацией можно ознакомиться в научно-технической библиотеке Московского авиационного института (национального исследовательского университета)

Автореферат разослан «08» октября 2012 г.

Ученый секретарь диссертационного совета Г.В.Федотенков

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. В настоящее время наиболее полно исследованными являются нестационарные контактные задачи для упругих однородных сред.

При этом практически отсутствуют публикации по подобным задачам для насыщенных пористых сред, которые исследуются в диссертационной работе.

При этом используется модель среды, состоящей из двух фаз с несовершенными связями – деформируемый скелет и сжимаемая жидкость (модель Био). Этот вариант среды описывает процессы во многих встречающихся в природе горных породах. Таким образом, тема диссертации актуальна не только с фундаментальной, но с практической точки зрения.

Цель работы заключается в постановке и аналитическом исследовании новых задач о действии нестационарной поверхностной нагрузки на упругопористую полуплоскость, движение которой описывается моделью Био, в том числе в построении соответствующих нестационарных поверхностных функций влияния.

Научная новизна диссертационной работы заключается в следующем:

- получены решения новых одно- и двумерных задач о нестационарных поверхностных функциях влияния для упруго-пористой полуплоскости;

- построено интегральное представление с ядрами в виде функций влияния решений задач о действии произвольных нестационарных поверхностных возмущений на упруго-пористую полуплоскость.

Практическое значение работы заключается в построении точных аналитических решений задач о распространении нестационарных возмущений в полуплоскости, заполненной упруго-пористой средой. Эти решения обеспечивают возможность исследования на современном уровне проблемы приземления различных аппаратов авиационной и ракетно-космической техники, других вопросов, связанных с объектами новой техники, а также могут быть использованы для оценки точности приближенных и численных решений.

Достоверность и обоснованность научных положений и полученных результатов подтверждается тем, что все они получены аналитическим путем с использованием строгих математических методов, а так же тем, что в частных случаях они согласуются с известными аналитическими решениями, построенных другими авторами.

Апробация работы и публикации. Результаты диссертационной работы докладывались на - на семинарах кафедры «Сопротивление материалов, динамика и прочность машин» Московского авиационного института (Москва, 2010-2012г.), - на XVI, XVII и XVIII Международных симпозиумах “Динамические и технологические проблемы механики конструкций и сплошных сред” им. А.Г.

Горшкова. (Москва, 2010, 2011 и 2012 г.г.), - на Международной конференции «Математические проблемы механики неоднородных структур» (Украина, Львов, 2010 г.), - на Всероссийской конференции “Механика наноструктурированных материалов и систем”, 13 – 15 декабря 2011 г., Москва, - на Московской молодежной научно-практической конференции “Инновации в авиации и космонавтике - 2012”. 17-20 апреля 2012 года. Москва.

Объём и структура работы. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы и содержит 96 страниц. Список используемой литературы включает 100 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность научных исследований, изложенных в диссертации, а также сформулированы цель и задачи, определена научная новизна, практическая и теоретическая ценность диссертационной работы.



В первой главе дан аналитический обзор современных научных исследований, связанных с темой диссертации. Указано, что вопросы действия нестационарной поверхностной нагрузки на упруго-пористые тела, а также нестационарного взаимодействия деформируемых тел с упруго-пористой и вязкоупругой средами изложены в работах Артикова Т.У, Алешкевича В.А., Басниева К.С., Белова А.А., Бреховского Л.М., Галиева Ш.У., Гафурбаева С.М., Гомилко А.М., Горбунова А.Т., Горшкова А.Г., Деденко Л.Г., Егорова А.Г., Зотова Г.А., Караваева В.А., Карелина И.С., Костерина А.В., Кудратова О., Игумнова Л.А., Ильюшина А.А., Ляхова Г. М., Наримова Ш., Николаевского В.Н., Саатова Я.У., Савицкого О.А., Сагомоняна А.Я., Скворцова Э.В., Трофимчука А.Н. и др.

Обширную библиографию по этому вопросу можно найти в обзорных статьях Городецкой Н.С., Соболя Т.В. и Зубаревой Л.П., Вестяка А.В., Горшкова А.Г. и Тарлаковского Д.В., Губайдуллина А.А. и Болдыревой О.Ю., Егорова А.Г. и Костерина А.В., Масликовой Т.И. и Поленова В.С., Liu Ying, Liu Kaixin и Li Rong, Nakoryakov V.E., Kuznetsov V.V. и Dontsov V. E., Philippacopoulos A. J., Van der Grinten Jos G. M., Van Dongen Marinus E. H. и Van der Kogel Hans.

Здесь же приведены основные соотношения модели Био для упругопористой среды, насыщенной жидкостью. Уравнения пространственного движения такой среды в векторной форме без учета диссипации и при отсутствии массовых сил имеют следующий вид:

где u и U - векторы смещения скелета и жидкости соответственно; t - время;

A и N - упругие постоянные скелета среды; R - давление, которое должно быть приложено к жидкости, для того чтобы заполнить пористый объем (при этом общий объем остается неизменным); Q - величина сцепления между твердыми и жидкими компонентами. 11, 22 - эффективные массы компонент при их относительном движении; 12 - коэффициент динамической связи между твёрдыми и жидкими компонентами; - оператор Лапласа.

Для плоских задач движение среды описывается уравнениями относительно x, z, векторного потенциала перемещений (Oxz - прямоугольная декартова система координат; - безразмерное время; точки обозначают производные по ; 1, 2, 2 - безразмерные параметры, обратные скоростям распространения волн):

Тангенциальные u и U, а также нормальные w и W перемещения скелета и жидкости в порах связаны с потенциалами следующими соотношениями:

Кинематические и физические соотношения для такой среды записываются так ( eij и ij - Компоненты тензоров деформаций в скелете и жидкости; ij и - компоненты тензора напряжений в скелете и напряжения в жидкости):

Здесь и далее использованы безразмерные величины В момент времени 0 возмущения отсутствуют:

Кроме того, считаем, что компоненты напряженно-деформированного состояния ограничены.

В рамках плоской задачи рассматривается полуплоскость z 0, на границе которой задан один из видов поверхностных возмущений:

- первый тип (кинематические возмущения) - второй тип (силовые возмущения) - третий тип (касательные кинематические и нормальные силовые возмущения) - четвертый тип (касательные силовые и нормальные кинематические возмущения) Для решения задач (2)-(6) с граничными условиями (7), или (8), или (9), или (10) используются поверхностные функциями влияния, под которыми понимаются ограниченные решения с граничными условиями с номером их типа j, в которых правые части определяются значением индекса : при 1 касательная составляющая ( u0 или P ) равна дельта-функции Дирака x,, нормальная составляющая ( w0 или P3 ) нулевая, а при 2, наоборот, касательная составляющая нулевая, а нормальная составляющая есть дельта-функция Дирака.

Тогда решения задач с граничными условиями (7), (8), (9) или (10) могут быть записаны в интегральном виде. Для краткости здесь приведем их в качестве примера только для первого варианта (звездочки соответствуют сверткам):

При использовании функций влияния на поверхности полуплоскости используются следующие обозначения:

В второй главе рассматриваются одномерные варианты поставленных в главе 1 задач, когда искомые функции зависят только от координаты z. При этом формулы (3) и (5) приобретают следующий вид (штрихами обозначены производные по z ):

При этом из четырех типов граничных условий возможными являются только два типа - первый и второй. Они так же, как и соответствующие интегральные представления упрощаются (здесь приводим их только для первого типа условий):

Функции w w2, W W2, 33 33,2 и 12 в соответствии с их определением должны удовлетворять граничным условиям Для определения этих функций используется преобразование Лапласа по времени (индекс « L » указывает на изображение; s - параметр преобразования).

В результате приходим к следующим изображениям перемещений и напряжений:

Здесь ( 1 и 2 - дополнительные безразмерные физические постоянные среды) Оригиналы этих функций находятся с использованием свойств преобразования Лапласа:

В работе приведены примеры расчетов для граничных условий первого и второго типов. Например, в первом случае рассмотрены возмущения вида w0. Соответствующие результаты имеют следующий вид:

На рис. 1 – 4 приведены результаты расчетов для полупространства, заполненного песчаником, поры которого насыщены керосином, со следующими физическими характеристиками:

A 0,4026 104 МПа, N 0,2493 103 МПа, R 0,672 104 МПа, Q 0,295 104 МПа, 11 0,6087.10 3 кг м 3, 22 0,2159.103 кг м3, 12 0,19.105 кг м 3, которым соответствуют безразмерные параметры ( 0 - пористость среды) Сплошные кривые построены при 0,15, штрихпунктирные – при 0,3, а пунктирные – при 0, 45. Отметим, что изломы на графиках перемещений и разрывы первого рода на графиках напряжений имеют место в точках x k (k 1, 2), определяющих фронты волн в скелете и жидкости.

В третьей главе для решения двумерной задачи применяется к соотношениям (2), (3) и (5) с учетом (6) интегральные преобразования Фурье по координате x и Лапласа по времени (индекс « F » указывает на изображения по Фурье; q - параметр этого преобразования). В результате найдены изображения всех указанных выше поверхностных функций влияния. Например, для функций влияния второй типа при 2 они имеют следующий вид:

FL FL FL

где На границе полуплоскости z 0 соответствующие функции влияния записываются так:

В этой же главе выполнен предельный переход к упругой среде. Показано, что результат с точностью до обозначений совпадает с известными решениями.

В четвертой главе изложен алгоритм построения оригиналов поверхностLF 2 LF 2 LF ных функций влияния на примере 13,1, 33,1,,1 и u 2, U 2, U 2, W 2, а также приведены примеры расчетов напряженно-деформированного состояния полуплоскости для заданных поверхностных нагрузок.

Обращение преобразований Лапласа и Фурье для некоторых составляющих изображений проведено последовательным построением оригиналов этих преобразований. Например, Однако для других функций такой подход затруднителен. Для них использован алгоритм совместного обращения преобразования Фурье-Лапласа, основанный на использовании аналитического представления изображений. В результате, например, для u 2, U 2, U 2, W 2 получен следующий результат:

Здесь (приведены только функции, входящие в первое из этих равеств) На рис. 5 – 8 приведены рассчитанные по формулам (28) графики зависимостей функций u u 2, w w 2, U U 2 и W W 2 от координаты x при различных значения времени: синие сплошные кривые соответствуют 0,15, зелёные штрихпунктирные - 0,3, а красные пунктирные - 0,45. Графики построены только в правой полуплоскости, поскольку первые и третья функции нечетные, а две остальные - четные.

В качестве примеров действия на полуплоскость нестационарных поверхностных нагрузок рассмотрены варианты задания кинематических и силовых условий. Например, во втором варианте полагается, что правые части в согласно формулам (12), перемещения на границе полуплоскости определяются так:

Результаты расчетов по этим формулам представлены на рис. 9 – 12. Кривые на них соответствуют указанным выше временам.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

1. Дана математическая постановка задач для нестационарных поверхностных функций влияния для полуплоскости, заполненной насыщенной жидкостью упруго-пористой средой.

2. Выделены четыре основных типа поверхностных функций влияния, соответствующие различным возможным граничным условиям на поверхности полуплоскости (кинематическим, силовым и смешанным).

3. С помощью преобразования Лапласа получены точные решения новых одномерных задач о нестационарных поверхностных функциях влияния для упруго-пористой полуплоскости.

4. С помощью преобразований Лапласа и Фурье получены решения новых двумерных задач о нестационарных поверхностных функциях влияния для упруго-пористой полуплоскости. Для определения оригиналов использован алгоритм совместного обращения преобразований.

5. Построено интегральное представление с ядрами в виде функций влияния решений задач о действии произвольных нестационарных поверхностных возмущений на упруго-пористую полуплоскость. Приведены примеры для различных возмущений.

6. Проведен предельный переход в решениях для двумерных задач к упругой полуплоскости. Показано совпадение с известными результатами.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

В рецензируемых научных изданиях и журналах:

1. Нгуен Нгок Хоа, Тарлаковский Д.В. Распространение нестационарных поверхностных кинематических возмущений в упруго-пористой полуплоскости // Механика композиционных материалов и конструкций. – 2011, Том 17, № 4. – С. 567-576.

2. Нгуен Нгок Хоа, Тарлаковский Д.В. Нестационарные поверхностные функции влияния для упруго-пористой полуплоскости // Электронный журнал “Труды МАИ”, 2012, № 53, www.mai.ru/science/trudy/.

В других научных изданиях и журналах:

1. Нгуен Нгок Хоа, Тарлаковский Д.В. Распространение нестационарных одномерных волн от границы упруго-пористого полупространства // Материалы XVI Международного симпозиума “Динамические и технологические проблемы механики конструкций и сплошных сред” им. А.Г. Горшкова. Т.2. – Чебоксары: ГУП “Чувашия”, 2010. – С.76.

2. Нгуен Нгок Хоа, Тарлаковский Д.В. Распространение нестационарных возмущений от границы упруго-пористого полуплоскости // Математичнi проблеми механiки неоднорiдних структур. – Львiв: Iнститут прикладних проблем механiки i математики iм. Я. С. Пiдстригача НАН Украiни, 2010. – С. 445 – 447.

3. Нгуен Нгок Хоа, Тарлаковский Д.В. Распрастранение нестационарных возмущений в упруго-пористой полуплоскости // Материалы XVII Международного симпозиума “Динамические и технологические проблемы механики конструкций и сплошных сред” им. А.Г. Горшкова. Т.1. – М.: ООО “TP-принт”, 2011. – С. 47.

4. Нгуен Нгок Хоа, Тарлаковский Д.В. Упруго-пористая полуплоскость под действием нестационарных поверхностных возмущений // Тезисы докладов Всероссийской конференции “Механика наноструктурированных материалов и систем”, 13 – 15 декабря 2011 г., Москва. – М.: Альянстрансатом, 2011 – С. 95Нгуен Нгок Хоа, Тарлаковский Д.В. Действие нестационарной поверхностной нагрузки на упруго-пористую полуплоскость // Материалы XVIII Международного симпозиума “Динамические и технологические проблемы механики конструкций и сплошных сред” им. А.Г. Горшкова. Т.2. – М.: ООО “TPпринт”, 2012. – С. 54 – 55.

6. Нгуен Нгок Хоа, Тарлаковский Д.В. Распространение нестационарных возмущений в полуплоскости, заполненной упруго-пористой средой // Сборник тезисов докладов Московской молодежной научно-практической конференции “Инновации в авиации и космонавтике - 2012”. 17-20 апреля 2012 года. – М.:

ООО «Принт-салон» 2012 – С. 279-280.




Похожие работы:





Похожие работы:

«Абидов Умед Ахмеджанович МЕТОДИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ СТРАТЕГИИ ОБЕСПЕЧЕНИЯ ЭНЕРГЕТИЧЕСКОЙ БЕЗОПАСНОСТИ СТРАНЫ (на материалах Республики Таджикистан) 08.00.05 – Экономика и управление народным хозяйством: экономическая безопасность АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Душанбе-2012 Диссертационная работа выполнена на кафедре Экономика и управление производством Таджикского технического университета имени академика М.С.Осими....»

«КОЧЕТКОВ Иван Александрович СОВЕРШЕНСТВОВАНИЕ ЭКОНОМИЧЕСКОГО МЕХАНИЗМА ГОСУДАРСТВЕННОГО РЕГУЛИРОВАНИЯ РАЗВИТИЯ МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЙ БАЗЫ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ОРГАНИЗАЦИЙ (на примере Костромской области) Специальность 08.00.05 – Экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями и комплексами: АПК и сельское хозяйство) Автореферат диссертации на соискание ученой степени кандидата экономических наук Москва - Работа...»

«ФАЙЗУЛЛИН Тагир Ришатович УСОВЕРШЕНСТВОВАНИЕ ЛАПАРОСКОПИЧЕСКОГО МЕТОДА ХОЛЕЦИСТЭКТОМИИ 14.01.17 – хирургия Автореферат диссертации на соискание ученой степени кандидата медицинских наук Уфа-2012 Работа выполнена в Государственном бюджетном образовательном учреждении высшего профессионального образования Башкирский государственный медицинский университет Министерства здравоохранения и социального развития Российской Федерации Научный руководитель : доктор медицинских наук,...»

«ОЛЕФИР Евгений Анатольевич РАЗРАБОТКА ЭФФЕКТИВНОЙ СИСТЕМЫ ХРАНЕНИЯ ПЛОДОВ ЯБЛОНИ В УСЛОВИЯХ КРАСНОДАРСКОГО КРАЯ 05.18.01 – Технология обработки, хранения и переработки злаковых, бобовых культур, крупяных продуктов, плодоовощной продукции и виноградарства АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата сельскохозяйственных наук Мичуринск – наукоград РФ 2012 Работа выполнена в ФГБОУ ВПО Кубанский государственный аграрный университет доктор сельскохозяйственных...»

«КОСТИН Василий Александрович ВОЗБУЖДЕНИЕ СОБСТВЕННЫХ КОЛЕБАНИЙ И ГЕНЕРАЦИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В ПЛАЗМЕННЫХ СТРУКТУРАХ, ФОРМИРУЕМЫХ ФЕМТОСЕКУНДНЫМИ ЛАЗЕРНЫМИ ИМПУЛЬСАМИ 01.04.08 — физика плазмы 01.04.21 — лазерная физика АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата физико-математических наук Нижний Новгород — 2012 Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте прикладной физики Российской академии наук (г. Нижний...»

«ЧИЖАНЬКОВА ИННА ВЛАДИМИРОВНА ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКИЕ АСПЕКТЫ РАЗВИТИЯ РЫНКА ЛИЗИНГОВЫХ УСЛУГ В СФЕРЕ НЕДВИЖИМОСТИ Специальность: 08.00.05 – Экономика и управление народным хозяйством (сфера услуг) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Москва – 2012 1 Работа выполнена на кафедре экономики недвижимости ФГБОУ ВПО Российский государственный торгово-экономический университет Научный руководитель Панкратов Евгений Павлович доктор...»

«Туровский Егор Александрович ИССЛЕДОВАНИЕ КАЛЬЦИЕВОЙ СИГНАЛИЗАЦИИ КУЛЬТИВИРУЕМЫХ БЕЛЫХ АДИПОЦИТОВ. КОНВЕРГЕНЦИЯ СИГНАЛЬНЫХ ПУТЕЙ, СОПРЯЖЕННЫХ С IP3- И РИАНОДИНОВЫМИ РЕЦЕПТОРАМИ 03.01.02 – Биофизика АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата биологических наук Пущино – 2012 -1 Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте биофизики клетки Российской академии наук. Пущинском Государственном естественно-научном институте...»

«) 08.00.05 – ) – 2011 2,, :, :,, : - 25 2012. 13. 800.024.,, : 188300,.,.,.,. 5. : 188300,.,.,.,. 5. 2011. www.gief.ru 800.024..,..,.,, 20.,,.,.,.,,. : 2010. 22%,, 2014. 23,8%, 2016. – 24,8%.,, ( 60 75 ) ( 75 90 ). 2000-. 20%-. ( ) 2007. 24,4% ( – 20%).,.., 2010..., 2009.: 14,6%, – 11,5%, – 11,1%, – 10,3%, – 18,4%. ( 2000. 6,8 1000 9,2 2010...»

«2 ОБЩАЯ ХАРАКТЕРСИТИКА РАБОТЫ Актуальность темы. Пятилистник кустарниковый Pentaphylloides fruticosa (L.) O. Schwarz (Rosaceae) или курильский чай – вид со многими целебными свойствами. В восточной медицине настой курильского чая используют как противовоспалительное, кровоостанавливающее, противоцинготное и успокоительное средства (Телятьев, 1976; Растения тибетской медицины., 1989). Эти свойства подтверждаются данными современной науки (Коровкина и др., 1971; Изучение антимикробной., 1986)....»

«ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность работы. Решение проблемы продления срока службы дорожных покрытий неразрывно связано с задачей получения материалов, надежно работающих в условиях знакопеременных температур под воздействием интенсивного автомобильного движения. Современные дорожные покрытия должны обеспечивать повышенную сдвигоустойчивость при высоких летних температурах, трещиностойкость при пониженных температурах, характеризоваться высокой коррозионной стойкостью под влиянием...»

«ГАВРИЛОВА Мария Васильевна КОНЦЕПТЫ ЖИЗНЬ И СМЕРТЬ В КНИГЕ РАССКАЗОВ Ю. БУЙДЫ ПРУССКАЯ НЕВЕСТА (ЯЗЫКОВЫЕ СТРАТЕГИИ МИФОТВОРЧЕСТВА) 10.02.01 – русский язык Автореферат диссертации на соискание ученой степени кандидата филологических наук Калининград – 2012 Работа выполнена в Федеральном государственном автономном образовательном учреждении высшего профессионального образования Балтийский федеральный университет имени Иммануила Канта Научный руководитель : доктор филологических...»

«Шумафов Магомет Мишаустович СТАБИЛИЗАЦИЯ УПРАВЛЯЕМЫХ ДИНАМИЧЕСКИХ СИСТЕМ Специальность 05.13.01 – системный анализ, управление и обработка информации (по прикладной математике и процессам управления) АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук Санкт-Петербург 2012 Работа выполнена на математико-механическом факультете СанктПетербургского государственного университета (СПбГУ). Научный...»

«УДК 512.54+519.17 НЕГАНОВА ЕЛЕНА АЛЕКСАНДРОВНА СИММЕТРИЧЕСКИЕ РАСШИРЕНИЯ ГРАФОВ 01.01.06 — математическая логика, алгебра и теория чисел АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук Екатеринбург - 2012 Работа выполнена в отделе алгебры и топологии Федерального государственного бюджетного учреждения науки Института математики и механики Уральского отделения Российской академии наук. Научный руководитель : доктор физико-математических...»

«Киселев Андрей Григорьевич Повышение рациональности использования потенциала государственных корпораций в социально-экономическом развитии регионов Специальность 08.00.05 – Экономика и управление народным хозяйством (региональная экономика) АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата экономических наук Москва 2012 Работа выполнена на кафедре мировой и региональной экономики НОУ ВПО Московская академия предпринимательства при Правительстве Москвы Научный...»

«ИМБС Андрей Борисович ЛИПИДЫ И ЖИРНЫЕ КИСЛОТЫ КОРАЛЛОВ ВЬЕТНАМА: СОСТАВ, ХЕМОТАКСОНОМИЧЕСКОЕ ЗНАЧЕНИЕ, ВОЗМОЖНЫЕ ПУТИ БИОСИНТЕЗА И ПЕРЕДАЧИ МЕЖДУ СИМБИОНТАМИ И ОРГАНИЗМОМ-ХОЗЯИНОМ 03.01.04 – Биохимия Автореферат диссертации на соискание ученой степени доктора биологических наук Владивосток – 2012 2 Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте биологии моря им. А.В. Жирмунского Дальневосточного отделения Российской академии наук...»

«ВАХИДОВ УМАР ШАХИДОВИЧ ТЕОРЕТИЧЕСКОЕ И ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ ПАРАМЕТРОВ МАШИН ВЫСОКОЙ ПРОХОДИМОСТИ ДЛЯ РЕШЕНИЯ ТРАНСПОРТНЫХ ПРОБЛЕМ ГОРНЫХ РАЙОНОВ СЕВЕРНОГО КАВКАЗА 05.05.03 – Колёсные и гусеничные машины Автореферат диссертации на соискание ученой степени доктора технических наук Нижний Новгород 2012 Работа выполнена на кафедре Строительные и дорожные машины Автомобильного института Нижегородского государственного технического университета им. Р.Е.Алексеева...»

«Елисеева Юлия Витальевна МЕТОД СРАВНИТЕЛЬНОГО ИНДЕКСА ПРИ МАТЕМАТИЧЕСКОМ МОДЕЛИРОВАНИИ КОЛЕБАНИЙ ДИСКРЕТНЫХ ЛИНЕЙНЫХ СИМПЛЕКТИЧЕСКИХ СИСТЕМ Специальность 05.13.18 - Математическое моделирование, численные методы и комплексы программ АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук Москва - 2012 г. Работа выполнена в ФГБОУ ВПО Московском Государственном Технологическом Университете СТАНКИН. Научный консультант : доктор...»

«ЦАПЛИЕНКО ТАТЬЯНА ИВАНОВНА Формирование современного естественнонаучного мировоззрения у студентов-гуманитариев с позиций синергетической парадигмы Специальность: 13.00.08 – теория и методика профессионального образования АВТОрЕФЕрАТ диссертации на соискание ученой степени кандидата педагогических наук Владикавказ – 2012 Работа выполнена в ФГБОУ ВПО Северо-Осетинский государственный университет им. К.Л.Хетагурова Научный руководитель : доктор педагогических наук, доцент...»

«Чернов Андрей Николаевич ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАБОТЫ КОНДИЦИОНЕРОВ, ОХЛАЖДАЮЩИХ ОБОРУДОВАНИЕ В ЦЕНТРАХ ОБРАБОТКИ ДАННЫХ Специальность: 05.23.03 Теплоснабжение, вентиляция, кондиционирование воздуха, газоснабжение и освещение АВТОРЕФЕРАТ Диссертации на соискателя ученой степени кандидата технических наук Тюмень 2012 Работа выполнена на кафедре теплотехнических и энергетических систем Магнитогорского государственного технического университета им. Г.И. Носова Научный...»

«Семкин Дмитрий Сергеевич ОБОСНОВАНИЕ РАЦИОНАЛЬНЫХ ПАРАМЕТРОВ И РЕЖИМОВ РАБОТЫ ОБОРУДОВАНИЯ ДЛЯ РАЗРАБОТКИ ГРУНТА ПОД МАГИСТРАЛЬНЫМ ТРУБОПРОВОДОМ Специальность 05.05.04 – Дорожные, строительные и подъемно-транспортные машины АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук Омск – 2012 19 Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования Сибирская государственная...»

 
2013 www.netess.ru - «Бесплатная библиотека авторефератов кандидатских и докторских диссертаций»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.